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Coisotropic reduction in
non-dissipative mechanics



The canonical phase spaces

• If 𝑄 is the configuration space of a mechanical system, the
phase space 𝑀 ∶= 𝑇 ∗𝑄 inherits a canonical symplectic
structure (𝑀, 𝜔),

𝜔 ∶= 𝜔𝑄 = −𝑑𝜆𝑄 = 𝑑𝑞𝑖 ∧ 𝑑𝑝𝑖.

• The phase space 𝑀 ∶= 𝑇 ∗𝑄 × ℝ inherits a canonical
cosymplectic structure, (𝑀, 𝜔, 𝜃),

𝜔 = 𝜔𝑄 = 𝑑𝑞𝑖 ∧ 𝑑𝑝𝑖, 𝜃 = 𝑑𝑡.
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The Poisson bracket

Symplectic and cosympelctic manifolds are Poisson manifolds
with the bracket

{𝑓, 𝑔} = 𝜕𝑓
𝜕𝑞𝑖

𝜕𝑔
𝜕𝑝𝑖

− 𝜕𝑓
𝜕𝑝𝑖

𝜕𝑔
𝜕𝑞𝑖 .

In each of these cases, the bracket is induced by the Poisson
bivector

Λ = 𝜕
𝜕𝑞𝑖 ∧ 𝜕

𝜕𝑝𝑖
, {𝑓, 𝑔} = Λ(𝑑𝑓, 𝑑𝑔).

We have an induced map

♯Λ ∶ 𝑇 ∗𝑀 → 𝑇 𝑀, 𝛼 ↦ 𝜄𝛼Λ.

Denote
ℋ ∶= im ♯Λ = ⟨ 𝜕

𝜕𝑞𝑖 , 𝜕
𝜕𝑝𝑖

⟩.

In symplectic manifolds, ℋ = 𝑇 𝑀.
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Coisotropic and Lagrangian submanifolds

If Δ ⊆ 𝑇𝑥𝑀, we define the orthogonal as

Δ⟂Λ ∶= ♯Λ(Δ0),

where Δ0 ⊆ 𝑇 ∗
𝑥𝑀 is the annihilator of Δ. We say that Δ is

• Coisotropic, if
Δ⟂Λ ⊆ Δ,

• Lagrangian, if
Δ⟂Λ = Δ ∩ ℋ.

These definitions apply to submanifolds 𝑁 ↪ 𝑀 as well.
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Coisotropic reduction in symplectic geometry

Let (𝑀, 𝜔) be a symplectic manifold and 𝑖 ∶ 𝑁 ↪ 𝑀 be a
coisotropic submanifold.

Proposition
(𝑇 𝑁)⟂Λ ⊆ 𝑇 𝑁 is an involutive distribution.

Define ℱ to be the maximal foliation associated to (𝑇 𝑁)⟂Λ . We
will assume that 𝑁/ℱ admits a manifold structure such that
the canonical projection 𝜋 ∶ 𝑁 → 𝑁/ℱ is a summersion.

Theorem (Weinstein)
There exists an unique symplectic form 𝜔𝑁 defined on 𝑁/ℱ
such that

𝜋∗𝜔𝑁 = 𝑖∗𝜔.
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Coisotropic reduction in cosymplectic geometry

Let (𝑀, 𝜔, 𝜃) be a cosymplectic manifold and 𝑖 ∶ 𝑁 ↪ 𝑀 be a
coisotropic submanifold.

Proposition
(𝑇 𝑁)⟂Λ ⊆ 𝑇 𝑁 is an involutive distribution.

Suppose 𝑁/ℱ admits a manifold structure such that
𝜋 ∶ 𝑁 → 𝑁/ℱ defines a summersion.

Theorem ( RIL-MLR)

• If 𝑇 𝑁 ⊆ ℋ, 𝑁/ℱ admits an unique symplectic structure
compatible with the strcuture defined on 𝑀.

• If 𝜕
𝜕𝑡 ∈ 𝑇 𝑁, 𝑁/ℱ admits an unique cosymplectic sturcture

compatible with the one defined on 𝑀.
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Coisotropic reduction in dissipative
mechanics



The canonical phase spaces

• The phase space of an autonomous dissipative system is
𝑇 ∗𝑄 × ℝ, with its canonical contact structure

𝜂 = 𝑑𝑧 − 𝑝𝑖𝑑𝑞𝑖.

• If we want to study time-dependent dissipative mechanics,
the phase space is 𝑇 ∗𝑄 × ℝ × ℝ endowed with its
cocontact structure

𝜂 = 𝑑𝑧 − 𝑝𝑖𝑑𝑞𝑖; 𝜃 = 𝑑𝑡.
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The Jacobi bracket

In both of these phase spaces there is a Jacobi bracket which is
locally given by

{𝑓, 𝑔} = 𝜕𝑓
𝜕𝑝𝑖

𝜕𝑔
𝜕𝑞𝑖 − 𝜕𝑓

𝜕𝑞𝑖
𝜕𝑔
𝜕𝑝𝑖

+𝑝𝑖 ( 𝜕𝑓
𝜕𝑝𝑖

𝜕𝑔
𝜕𝑧

− 𝜕𝑔
𝜕𝑝𝑖

𝜕𝑓
𝜕𝑧

)+𝑔𝜕𝑓
𝜕𝑧

−𝑓𝜕𝑔
𝜕𝑧

.

This Jacobi bracket is defined through the Jacobi bivector and a
vector field

Λ = 𝜕
𝜕𝑝𝑖

∧ 𝜕
𝜕𝑞𝑖 + 𝑝𝑖

𝜕
𝜕𝑝𝑖

∧ 𝜕
𝜕𝑧

,

𝐸 = − 𝜕
𝜕𝑧

,

as
{𝑓, 𝑔} = Λ(𝑑𝑓, 𝑑𝑔) + 𝑓𝐸(𝑔) − 𝑔𝐸(𝑓).
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Coisotropic and Legendrian submanifolds

The orthogonal of a distribution Δ ⊆ 𝑇 𝑀 is defined as

Δ⟂Λ = ♯Λ(Δ0),

where
♯Λ ∶ 𝑇 ∗𝑀 → 𝑇 𝑀; 𝛼 ↦ 𝜄𝛼Λ.

We say that Δ is

• Coisotropic, if
Δ⟂Λ ⊆ Δ,

• Legendrian, if
Δ⟂Λ = Δ.

The same definitions apply to submanifolds 𝑁 ↪ 𝑀 as well.
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Coisotropic reduction

Proposition
If 𝑁 ↪ 𝑀 is a coisotropic submanifold, then (𝑇 𝑁)⟂Λ is
involutive and thus arises from a maximal foliation ℱ.

We assume that 𝜕
𝜕𝑧 ∈ 𝑇 𝑁.

Theorem
If 𝑀 is a contact manifold, 𝑁/ℱ admitis an unique contact
structure compatible with the one on 𝑀.
If 𝑀 is a cocontact manifold:

• If 𝜕
𝜕𝑡 ∈ 𝑇 𝑁, 𝑁/ℱ inherits an unique cocontact structure

from 𝑀.
• If 𝑇 𝑁 ⊆ im ♯Λ ⊕ ⟨ 𝜕

𝜕𝑧⟩, 𝑁/ℱ inherits an unique contact
structure from 𝑀.
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