Graded structures of classical field theory

XIX Young Researchers Workshop in Geometry Dynamics and Field Theory

Rubén Izquierdo-López, joint work with M. de León

20-22 January, 2025

ICMAT-UNIR

Poisson an Dirac structures in Classical Mechanics

Graded Poisson and Dirac structures

Foliations

Poisson an Dirac structures in Classical Mechanics

A Poisson structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on $C^{\infty}(M)$ that satisfies:

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

A Poisson structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on $C^{\infty}(M)$ that satisfies:

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Poisson structure can be given by

 A bivector field Λ ∈ X²(M) such that [Λ, Λ] = 0. ({f,g} = Λ(df, dg)),

A Poisson structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on $C^{\infty}(M)$ that satisfies:

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Poisson structure can be given by

- A bivector field $\Lambda \in \mathfrak{X}^2(M)$ such that $[\Lambda, \Lambda] = 0$. $(\{f, g\} = \Lambda(df, dg)),$

A Poisson structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on $C^{\infty}(M)$ that satisfies:

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Poisson structure can be given by

- A bivector field $\Lambda \in \mathfrak{X}^2(M)$ such that $[\Lambda, \Lambda] = 0$. $(\{f, g\} = \Lambda(df, dg)),$
- A foliation of *M* by symplectic leaves.

Definition

A Dirac structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on

$$C^{\infty}(U)_{\mathcal{K}} = \{f \in C^{\infty}(U) : X(f) = 0, \forall X \in \mathcal{K}\},\$$

for every U open subset, where K is a smooth integrable distribution on M (maybe not of constant rank) that satisfies

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Definition

A Dirac structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on

$$C^{\infty}(U)_{\mathcal{K}} = \{f \in C^{\infty}(U) : X(f) = 0, \forall X \in \mathcal{K}\},\$$

for every U open subset, where K is a smooth integrable distribution on ${\cal M}$ (maybe not of constant rank) that satisfies

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Dirac structure can be given by

• An involutive and Lagrangian subbundle $L \subseteq TM \oplus_M T^*M$.

Definition

A Dirac structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on

$$C^{\infty}(U)_{\mathcal{K}} = \{f \in C^{\infty}(U) : X(f) = 0, \forall X \in \mathcal{K}\},\$$

for every U open subset, where K is a smooth integrable distribution on ${\cal M}$ (maybe not of constant rank) that satisfies

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, \mathit{g}\} = \mathit{f}\{\mathit{h}, \mathit{g}\} + \mathit{h}\{\mathit{f}, \mathit{g}\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Dirac structure can be given by

- An involutive and Lagrangian subbundle $L \subseteq TM \oplus_M T^*M$.

Definition

A Dirac structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on

$$C^{\infty}(U)_{\mathcal{K}} = \{f \in C^{\infty}(U) : X(f) = 0, \forall X \in \mathcal{K}\},\$$

for every U open subset, where K is a smooth integrable distribution on ${\cal M}$ (maybe not of constant rank) that satisfies

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, \mathit{g}\} = \mathit{f}\{\mathit{h}, \mathit{g}\} + \mathit{h}\{\mathit{f}, \mathit{g}\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Dirac structure can be given by

- An involutive and Lagrangian subbundle $L \subseteq TM \oplus_M T^*M$.
- A foliation of *M* by pre-symplectic leaves.

Translate this picture to classical field theories.

More particularly,

Find an equivalence between brackets and some tensorial object.

Classical mechanics

Classical field theories

Graded Poisson and Dirac structures

In order to work with any of the formalisms (Lagrangian, extended Hamiltonian, reduced Hamiltonian), we will work abstractly with a multisymplectic manifold, (M, ω) , a manifold M together with a closed (n + 1)-form.

In order to work with any of the formalisms (Lagrangian, extended Hamiltonian, reduced Hamiltonian), we will work abstractly with a multisymplectic manifold, (M, ω) , a manifold M together with a closed (n+1)-form. We have already a lot of examples:

• $(J^1\pi, \Omega_{\mathcal{L}})$, where \mathcal{L} is a Lagrangian;

- $(\bigwedge_{2}^{n} Y, \Omega);$
- (Z^*, Ω_h) , where $h: Z^* \to \bigwedge_2^n Y$ is a Hamiltonian section;
- (M, ω) , where M is an orientable manifold and ω is a volume form.

On every multisymplectic manifold, we have the corresponding generalization of Hamiltonian vector fields:

On every multisymplectic manifold, we have the corresponding generalization of Hamiltonian vector fields:

Definition

A multivector field $U \in \mathfrak{X}^q(M)$ is called Hamiltonian if

 $\iota_U \Omega = d\alpha,$

where $\alpha \in \Omega^{n-q}(M)$ is called the corresponding Hamiltonian form.

On every multisymplectic manifold, we have the corresponding generalization of Hamiltonian vector fields:

Definition A multivector field $U \in \mathfrak{X}^q(M)$ is called Hamiltonian if

 $\iota_U \Omega = d\alpha,$

where $\alpha \in \Omega^{n-q}(M)$ is called the corresponding Hamiltonian form.

We have the following:

Proposition

If U, V are Hamiltonian multivector fields of degree p, q. Then [U, V] is a Hamiltonian multivector field of order p + q - 1. The corresponding Hamiltonian form is

 $(-1)^q \iota_{U \wedge V} \Omega.$

The previous proposition induces the following:

Definition Let α, β be Hamiltonian forms of order k - p, k - q, respectively. Define their Poisson bracket

$$\{\alpha,\beta\}:=(-1)^q\iota_{U\wedge V}\Omega,$$

where U, V are their respective Hamiltonian multivector fields.

The previous proposition induces the following:

Definition Let α, β be Hamiltonian forms of order k - p, k - q, respectively. Define their Poisson bracket

$$\{\alpha,\beta\}:=(-1)^q\iota_{U\wedge V}\Omega,$$

where U, V are their respective Hamiltonian multivector fields.

Then, we have

Theorem

Modulo exact forms, the previous brackets defines a graded Lie algebra on the space of Hamiltonian forms

Question: Does this recover the multisymplectic form?

Properties of graded Poisson brackets

If we set deg $\beta := k$ – order of β , then th Poisson bracket satisfies:

• It is graded:

$$\mathsf{deg}\{\alpha,\beta\} = \mathsf{deg}\,\alpha + \mathsf{deg}\,\beta;$$

It is graded-skew-symmetric:

$$\{\alpha,\beta\} = -(-1)^{\deg \alpha \deg \beta} \{\beta,\alpha\};$$

- It is local: If $d\alpha|_x = 0, \{\alpha, \beta\}|_x = 0$
- It satisfies graded Jacobi identity (up to an exact term):

 $(-1)^{\deg \alpha \deg \gamma} \{ \{ \alpha, \beta \}, \gamma \} + \text{cyclic terms} = \text{exact form.}$

Properties of graded Poisson brackets

If we set deg $\beta := k$ – order of β , then th Poisson bracket satisfies:

• It is graded:

$$\mathsf{deg}\{\alpha,\beta\} = \mathsf{deg}\,\alpha + \mathsf{deg}\,\beta;$$

It is graded-skew-symmetric:

$$\{\alpha,\beta\} = -(-1)^{\deg \alpha \deg \beta} \{\beta,\alpha\};$$

- It is local: If $d\alpha|_x = 0$, $\{\alpha, \beta\}|_x = 0$
- It satisfies graded Jacobi identity (up to an exact term):

 $(-1)^{\deg \alpha \deg \gamma} \{ \{ \alpha, \beta \}, \gamma \} + \text{cyclic terms} = \text{exact form.}$

- It satisfies Leibniz identity: For a = k, if β ∧ dγ ∈ Ω^{b+c-1}_H(M), then
 {β ∧ dγ, α} = {β, α} ∧ dγ + (-1)^{k-deg β}dβ ∧ {γ, α};
- It is invariant by symmetries: If $X \in \mathfrak{X}(M)$ and $\mathfrak{L}_X \alpha = 0$, then $\iota_X \alpha \in \Omega_H^{a-2}(M)$ and

$$\{\iota_X \alpha, \beta\} = (-1)^{\deg \beta} \iota_X \{\alpha, \beta\};$$
⁹

Onto the definitions...

First, we look at the linearized version:

Definition

Let *M* be a manifold. A graded Dirac structure of order *n* is a tuple (S^a, K_p, \sharp_a) , where $S^a \subseteq \bigwedge^a M$ is a vector subbundle of forms, $K_p \subseteq \bigvee_p M (= \bigwedge^p TM)$ is a subbundle of multivectors, and

$$\sharp_a:S^a\to\bigvee_{n+1-a}M/K_{n+1-a}$$

are linear bundle maps sastifying:

First, we look at the linearized version:

Definition

Let *M* be a manifold. A graded Dirac structure of order *n* is a tuple (S^a, K_p, \sharp_a) , where $S^a \subseteq \bigwedge^a M$ is a vector subbundle of forms, $K_p \subseteq \bigvee_p M (= \bigwedge^p TM)$ is a subbundle of multivectors, and

$$\sharp_a:S^a\to\bigvee_{n+1-a}M/K_{n+1-a}$$

are linear bundle maps sastifying:

- $K_p = (S^a)^{\circ,p}$, for $p \leq a$.
- The maps *‡*_a are *skew-symmetric*, that is,

$$\iota_{\sharp_a(\alpha)}\beta = (-1)^{(n+1-a)(n+1-b)}\iota_{\sharp_b(\beta)}\alpha,$$

for all $\alpha \in S^a$, $\beta \in S^b$.

And it is integrable:

• It is *integrable*: For $\alpha : M \to S^a$, $\beta : M \to S^b$ sections such that $a + b \le 2n + 1$, and U, V multivectors of order p = n + 1 - a, q = n + 1 - b, respectively such that

$$\sharp_{a}(\alpha) = U + K_{p}, \ \sharp_{b}(\beta) = V + K_{q},$$

we have that the (a + b - k)-form

$$\theta := (-1)^{(p-1)q} \mathcal{E}_U \beta + (-1)^q \mathcal{E}_V \alpha - \frac{(-1)^q}{2} d\left(\iota_V \alpha + (-1)^{pq} \iota_U \beta\right)$$

takes values in S_{a+b-k} , and

$$\sharp_{a+b-k}(\theta) = [U, V] + K_{p+q-1}.$$

Let (M, ω) be a multisymplectic manifold of order n, that is, the form ω must satisfy $\iota_v \omega = 0$ if and only if v = 0. Then, the (linear) correspondence between Hamiltonian multivector fields and forms defines a graded Dirac structure of order n:

Let (M, ω) be a multisymplectic manifold of order n, that is, the form ω must satisfy $\iota_v \omega = 0$ if and only if v = 0. Then, the (linear) correspondence between Hamiltonian multivector fields and forms defines a graded Dirac structure of order n:

$$S^{a} = \{\iota_{U}\omega : U \in \bigvee_{n+1-a} M\};$$

$$K_{p} = \ker_{p} \omega;$$

$$\sharp_{a} : S^{a} \to \bigvee_{n+1-a} / K_{n+1-a} \text{ is given by}$$

$$\sharp_{a}(\alpha) = U + K_{n+1-a} \text{ if and only if } \iota_{U}\omega = \alpha.$$

In this case, \sharp_a are the inverse of the \flat_p (contraction) maps induced by ω .

Relationship with graded Poisson brackets

Given a graded Dirac structure on M, (S^a, \sharp_a, K_p) , we can define a Hamiltonian form as an (a-1)-form, α such that $d\alpha \in S^a$.

Definition

The Poisson bracket of Hamiltonian forms is given by

$$\{\alpha,\beta\} := (-1)^{\deg\beta} \iota_{\sharp_b(d\beta)} d\alpha$$

It satisfies all previous properties and, furthermore,

Relationship with graded Poisson brackets

Given a graded Dirac structure on M, (S^a, \sharp_a, K_p) , we can define a Hamiltonian form as an (a-1)-form, α such that $d\alpha \in S^a$.

Definition The Poisson bracket of Hamiltonian forms is given by

$$\{\alpha,\beta\} := (-1)^{\deg\beta} \iota_{\sharp_b(d\beta)} d\alpha$$

It satisfies all previous properties and, furthermore,

Theorem

Under some integrability conditions on the sequence of subspaces S^a, any graded Dirac structure on this family is completely characterized by the graded Poisson bracket it induces. That is, we get a 1-1 correspondence

 $\{Graded Poisson structures\} \cong \{Graded Poisson brackets\}.$

But why?

• The quest of finding a bracket formulation of field theories.

- The quest of finding a bracket formulation of field theories.
- Tools.

	Symplectic	Poisson	Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	No	Yes	Yes

	Multisymplectic	Graded Poisson	Graded Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	No	Yes	Yes

What are the integrability conditions on the sequence S^a ?

What are the integrability conditions on the sequence S^a ?

• Locally, there exists Hamiltonian forms $\gamma_{ij} \in \Omega^{b-2}_H(U)$, and functions f_i^j such that

$$S^{b} = \langle df_{i}^{j} \wedge d\gamma_{ij}, i \rangle;$$

What are the integrability conditions on the sequence S^a ?

• Locally, there exists Hamiltonian forms $\gamma_{ij} \in \Omega^{b-2}_H(U)$, and functions f_i^j such that

$$S^{b} = \langle df_{i}^{j} \wedge d\gamma_{ij}, i \rangle;$$

 For each 1 ≤ a ≤ k, locally, there exists a family of Hamiltonian forms forms γ^j, and a family of vector fields X^j such that

$$S^a = \langle d\gamma^j \rangle \ \pounds_{X^j} \gamma^j = 0,$$

and

$$S^{a-1} = \langle d\iota_{X^j} \gamma^j \rangle.$$

Foliations

• Dirac structures \cong Pre-symplectic foliations.

- Dirac structures \cong Pre-symplectic foliations.
- Graded Dirac structures → Multisymplectic (possibly degenerate) foliations.

- Dirac structures \cong Pre-symplectic foliations.
- Graded Dirac structures → Multisymplectic (possibly degenerate) foliations.
- Multisymplectic foliations (with some technical conditions) Graded Dirac structures.

- Dirac structures \cong Pre-symplectic foliations.
- Graded Dirac structures → Multisymplectic (possibly degenerate) foliations.
- Multisymplectic foliations (with some technical conditions) Graded Dirac structures.
- The correspondences are not inverse of the other!

Are there non-trivial examples? Yes!

- We developed the theory of Poisson bracket and tensors in classical field theories;
- Can we find an analogue to Lie-Poisson structures in this setting?;
- How are these bracket and structures related to reduction?

References

- H. Bursztyn, N. Martinez-Alba, and R. Rubio. "On Higher Dirac Structures". In: International Mathematics Research Notices 2019.5 (Mar. 2019), pp. 1503–1542. ISSN: 1073-7928. DOI: 10.1093/imrn/rnx163.
- [2] Manuel de León and Rubén Izquierdo-López. Graded Poisson and Graded Dirac structures. 2024. arXiv: 2410.06034 [math-ph].
- [3] J. Vankerschaver, H. Yoshimura, and M. Leok. "On the geometry of multi-Dirac structures and Gerstenhaber algebras". en. In: *Journal of Geometry and Physics* 61.8 (Aug. 2011), pp. 1415–1425. ISSN: 03930440. DOI: 10.1016/j.geomphys.2011.03.005.
- J. Vankerschaver, H. Yoshimura, and M. Leok. "The Hamilton-Pontryagin principle and multi-Dirac structures for classical field theories". In: *Journal of Mathematical Physics* 53.7 (July 2012). ISSN: 1089-7658. DOI: 10.1063/1.4731481.
- [5] M. Zambon. "L_∞-algebras and higher analogues of Dirac sturctures and Courant albegroids". In: Journal of Symplectic Geometry 10.4 (Dec. 2012), pp. 563–599. ISSN: 1527-5256, 1540-2347.

Thank you for your attention!