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Poisson an Dirac structures in
Classical Mechanics



Poisson structures

Definition
A Poisson structure on a smooth manifold M is a bracket {·, ·} defined
on C∞(M) that satisfies:

• Skew-symmetry, {f , g} = −{g , f }
• Leibniz identity, {fh, g} = f {h, g} + h{f , g}
• Jacobi identity, {f , {g , h}} + {h, {f , g}} + {g , {h, f }} = 0.

Equivalently, a Poisson structure can be given by

• A bivector field Λ ∈ X2(M) such that [Λ, Λ] = 0.
({f , g} = Λ(df , dg)),

• A skew-symmetric map ♯ : T ∗M → TM satisfying some integrability
conditions,

• A foliation of M by symplectic leaves.
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Going degenerate: Dirac structures

Definition
A Dirac structure on a smooth manifold M is a bracket {·, ·} defined on

C∞(U)K = {f ∈ C∞(U) : X (f ) = 0, ∀X ∈ K},

for every U open subset, where K is a smooth integrable distribution on
M (maybe not of constant rank) that satisfies

• Skew-symmetry, {f , g} = −{g , f }
• Leibniz identity, {fh, g} = f {h, g} + h{f , g}
• Jacobi identity, {f , {g , h}} + {h, {f , g}} + {g , {h, f }} = 0.

Equivalently, a Dirac structure can be given by

• An involutive and Lagrangian subbundle L ⊆ TM ⊕M T ∗M.
• A integrable and skew-symmetric map ♯ : S → TM/K , where

S ⊆ T ∗M is a subbundle and K = S◦ is an integrable distribution,
• A foliation of M by pre-symplectic leaves.
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Objective

Translate this picture to classical field theories.
More particularly,
Find an equivalence between brackets and some tensorial object.

Graded Dirac

Graded Poisson

Multisymplectic

Forms ω such that
Im ♭p does not have
constant rank

Dirac

Poisson

Pre-symplectic

Classical mechanics Classical field theories
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Graded Poisson and Dirac
structures



Multisymplectic manifolds

In order to work with any of the formalisms (Lagrangian, extended
Hamiltonian, reduced Hamiltonian), we will work abstractly with a
multisymplectic manifold, (M, ω), a manifold M together with a closed
(n + 1)−form.

We have already a lot of examples:

• (J1π, ΩL), where L is a Lagrangian;
• (

∧n
2 Y , Ω);

• (Z∗, Ωh), where h : Z∗ →
∧n

2 Y is a Hamiltonian section;
• (M, ω), where M is an orientable manifold and ω is a volume form.
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Hamiltonian multivector fields and Hamiltonian forms

On every multisymplectic manifold, we have the corresponding
generalization of Hamiltonian vector fields:

Definition
A multivector field U ∈ Xq(M) is called Hamiltonian if

ιUΩ = dα,

where α ∈ Ωn−q(M) is called the corresponding Hamiltonian form.

We have the following:

Proposition
If U, V are Hamiltonian multivector fields of degree p, q. Then [U, V ] is
a Hamiltonian multivector field of order p + q − 1. The corresponding
Hamiltonian form is

(−1)qιU∧V Ω.

7



Hamiltonian multivector fields and Hamiltonian forms

On every multisymplectic manifold, we have the corresponding
generalization of Hamiltonian vector fields:

Definition
A multivector field U ∈ Xq(M) is called Hamiltonian if

ιUΩ = dα,

where α ∈ Ωn−q(M) is called the corresponding Hamiltonian form.

We have the following:

Proposition
If U, V are Hamiltonian multivector fields of degree p, q. Then [U, V ] is
a Hamiltonian multivector field of order p + q − 1. The corresponding
Hamiltonian form is

(−1)qιU∧V Ω.

7



Hamiltonian multivector fields and Hamiltonian forms

On every multisymplectic manifold, we have the corresponding
generalization of Hamiltonian vector fields:

Definition
A multivector field U ∈ Xq(M) is called Hamiltonian if

ιUΩ = dα,

where α ∈ Ωn−q(M) is called the corresponding Hamiltonian form.

We have the following:

Proposition
If U, V are Hamiltonian multivector fields of degree p, q. Then [U, V ] is
a Hamiltonian multivector field of order p + q − 1. The corresponding
Hamiltonian form is

(−1)qιU∧V Ω.

7



Graded Poisson brackets

The previous proposition induces the following:

Definition
Let α, β be Hamiltonian forms of order k − p, k − q, respectively. Define
their Poisson bracket

{α, β} := (−1)qιU∧V Ω,

where U, V are their respective Hamiltonian multivector fields.

Then, we have

Theorem
Modulo exact forms, the previous brackets defines a graded Lie algebra
on the space of Hamiltonian forms

Question: Does this recover the multisymplectic form?
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Properties of graded Poisson brackets

If we set deg β := k − order of β, then th Poisson bracket satisfies:

• It is graded:
deg{α, β} = deg α + deg β;

• It is graded-skew-symmetric:

{α, β} = −(−1)deg α deg β{β, α};

• It is local: If dα|x = 0, {α, β}|x = 0
• It satisfies graded Jacobi identity (up to an exact term):

(−1)deg α deg γ{{α, β}, γ} + cyclic terms = exact form.

• It satisfies Leibniz identity: For a = k, if β ∧ dγ ∈ Ωb+c−1
H (M), then

{β ∧ dγ, α} = {β, α} ∧ dγ + (−1)k−deg βdβ ∧ {γ, α};

• It is invariant by symmetries: If X ∈ X(M) and £X α = 0, then
ιX α ∈ Ωa−2

H (M) and

{ιX α, β} = (−1)deg βιX {α, β};
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Onto the definitions...

First, we look at the linearized version:
Definition
Let M be a manifold. A graded Dirac structure of order n is a tuple
(Sa, Kp, ♯a), where Sa ⊆

∧a M is a vector subbundle of forms,
Kp ⊆

∨
p M(=

∧p TM) is a subbundle of multivectors, and

♯a : Sa →
∨

n+1−a
M/Kn+1−a

are linear bundle maps sastifying:

• Kp = (Sa)◦,p, for p ≤ a.
• The maps ♯a are skew-symmetric, that is,

ι♯a(α)β = (−1)(n+1−a)(n+1−b)ι♯b(β)α,

for all α ∈ Sa, β ∈ Sb.
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And it is integrable:

• It is integrable: For α : M → Sa, β : M → Sb sections such that
a + b ≤ 2n + 1, and U, V multivectors of order p = n + 1 − a,
q = n + 1 − b, respectively such that

♯a(α) = U + Kp, ♯b(β) = V + Kq,

we have that the (a + b − k)-form

θ := (−1)(p−1)q£Uβ + (−1)q£V α − (−1)q

2 d (ιV α + (−1)pqιUβ)

takes values in Sa+b−k , and

♯a+b−k(θ) = [U, V ] + Kp+q−1.
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Field theories as an example

Let (M, ω) be a multisymplectic manifold of order n, that is, the form ω

must satisfy ιv ω = 0 if and only if v = 0. Then, the (linear)
correspondence between Hamiltonian multivector fields and forms defines
a graded Dirac structure of order n:

•
Sa = {ιUω : U ∈

∨
n+1−a

M};

•
Kp = kerp ω;

• ♯a : Sa →
∨

n+1−a /Kn+1−a is given by

♯a(α) = U + Kn+1−a if and only if ιUω = α.

In this case, ♯a are the inverse of the ♭p (contraction) maps induced by ω.
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Relationship with graded Poisson brackets

Given a graded Dirac structure on M, (Sa, ♯a, Kp), we can define a
Hamiltonian form as an (a − 1)−form, α such that dα ∈ Sa.

Definition
The Poisson bracket of Hamiltonian forms is given by

{α, β} := (−1)deg βι♯b(dβ)dα

It satisfies all previous properties and, furthermore,

Theorem
Under some integrability conditions on the sequence of subspaces Sa, any
graded Dirac structure on this family is completely characterized by the
graded Poisson bracket it induces. That is, we get a 1-1 correspondence

{Graded Poisson structures} ∼= {Graded Poisson brackets}.
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But why?

• The quest of finding a bracket formulation of field theories.
• Tools.
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Integrability conditions

What are the integrability conditions on the sequence Sa?

• Locally, there exists Hamiltonian forms γij ∈ Ωb−2
H (U), and functions

f j
i such that

Sb = ⟨df j
i ∧ dγij , i⟩;

• For each 1 ≤ a ≤ k, locally, there exists a family of Hamiltonian
forms forms γj , and a family of vector fields X j such that

Sa = ⟨dγj⟩ £X j γj = 0,

and
Sa−1 = ⟨dιX j γj⟩.
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Idea of the Proof
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Foliations



Are there non-trivial examples?

• Dirac structures ∼= Pre-symplectic foliations.
• Graded Dirac structures =⇒ Multisymplectic (possibly degenerate)

foliations.
• Multisymplectic foliations (with some technical conditions) =⇒

Graded Dirac structures.
• The correspondences are not inverse of the other!
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Are there non-trivial examples? Yes!
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Final remarks and future research

• We developed the theory of Poisson bracket and tensors in classical
field theories;

• Can we find an analogue to Lie-Poisson structures in this setting?;
• How are these bracket and structures related to reduction?
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Thank you for your attention!
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