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Introduction to the problem



Conserved quantities in field theories I

For α ∈ Ωn−1(M):∫
Xt1

α =
∫

Xt2

α−
∫

∂X×[t1,t2]
α ⇐⇒ dα = 0.
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Proposed problem

Problem (that we would like to solve): Find all conserved
quantities ∼ Find forms that are closed on solutions.

Problem (that we solve): Determine evolution of forms via
some bracket:

ψ∗(dα) = dα + {α,H} ,

where ψ is a solution of the corresponding PDE and α is some
a-form.
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Geometric stage and algebraic
structure of observables



General setup for field equations

Let τ : M −→ X denote a fibered manifold, n = dim X . Let:

(i) α1, . . . , αk ∈ Ωn−1(M) be semi-basic forms (representing
observables).

(ii) β1, . . . , βk ∈ Ωn(M) be basic forms (representing
evolution of observables).

We deal with partial differential equations with the following
structure*:

ψ∗(dαi) = βi ◦ ψ ,where ψ : X → M is a section.
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Examples (equations)

(i) Hamilton equations:
(a) Fiber bundle: T ∗Q × R → R.
(b) Semi-basic forms: qi , pi , t.
(c) Basic forms: ∂H

∂pi
dt , − ∂H

∂qi dt, dt.
(ii) Hamilton–De Donder–Weyl equations:

(a) Fiber bundle: (covariant phase space)
∧n

2 Y /
∧n

1 Y → X .
(b) Semi-basic forms: y idn−1xµ, pµ

i dn−1xµ, 1
nxµdn−1xµ.

(c) Basic forms: ∂H
∂pµ

i
dnx , − ∂H

∂y i dnx , dnx .
(iii) Yang–Mills equations:

(a) Fiber bundle: Im legL → X .
(b) Semi-basic forms:

Ai
µdn−1xν − Ai

νdn−1xµ, F µν
i dn−1xν , 1

nxµdn−1xµ.
(c) Basic forms:(

F i
µν − f i

jkAj
νAk

µ

)
dnx ,

(
−f i

jkF µν
i Ak

µ

)
dnx , dnx .
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Algebraic structure of observables

The observables α1 . . . , αk ∈ Ωn−1(M) allow us to define the
space of Hamiltonian forms:

Ωn−1
H (M) := {α ∈ Ωn−1(M) : dα ∈ ⟨dα1, . . . dαk⟩} .

Assumption 1: There is a bracket {·, ·} on the space of
Hamiltonian forms satisfying the following properties:

(i) It is skew-symmetric : {α, β} = −{β, α}.
(ii) It satisfies the Jacobi identity up to an exact term:

{α, {β, γ}} + {β, {γ, α}} + {γ, {α, β}} = exact form .

(iii) It vanishes on closed forms: dα = 0 =⇒ {α, β} = 0.
(iv) There is a correspondence α 7→ Xα such that

{α, β} = ιXβ
dα.
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Examples (algebraic structure)

(i) Hamilton equations: Non vanishing brackets:

{qi , pj} = δi
j .

(ii) Hamilton–De Donder–Weyl equations: Non vanishing
brackets:

{y idn−1xµ, pν
j dn−1xν} = δi

j dn−1xν .

(iii) Yang–Mills equations: Non vanishing brackets:

{Ai
µdn−1xν − Ai

νdn−1xµ,F αβ
j dn−1xβ} = δi

jδ
αβ
µν dn−1xβ .
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Hamiltonian forms of arbitrary order I

Definition
We say that a form α ∈ Ωa(M) is special Hamiltonian if there
is a semi-basic form β ∈ Ωa+1(M) such that ψ∗(dα) = β ◦ ψ,
for every solution of the equations. The space of special
Hamiltonian a-forms is denoted by Ω̃a

H(M).

Remark
If α ∈ Ωn−1(M) is special Hamiltonian, α ∈ Ωn−1

H (M).

Theorem (de León, I.L. 2025)
α ∈ Ωa(M) is special Hamiltonian if and only if
α ∧ ε ∈ Ωn−1

H (M), for every closed and basic ε ∈ Ωn−1−a(M).
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Hamiltonian forms of arbitrary order II

Definition
A form α ∈ Ωa

H(M) is called Hamiltonian if
dα ∈ ι∧n−(a+1) TM⟨dα1, . . . , dαk⟩. We denote by Ωa

H(M) the
space of Hamiltonian a-forms.

Proposition
Ω̃a

H(M) ⊆ Ωa
H(M)

Theorem (de León, I.L. 2025)
There is an unique induced graded Poisson bracket

Ωa
H(M) ⊗ Ωb

H(M) → Ωa+b−(n−1)
H (M)

that mantains the properties of the original bracket of
(n − 1)-forms. Furthermore*, special Hamiltonian forms define
a subalgebra.
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Summary
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Hamiltonians and extensions of
brackets



Domain of definition of current brackets

ψ∗(dα) = dα + {α,H}
deg{α,H} = degα + deg H − (n − 1)

=⇒ deg H = n.

But:
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First extension of the brackets I

Theorem (de León, I.L. 2025)
There exists an unique extension of {·, ·}

Ωn−1
H (M) ⊗ Ωa

H(M)[1] → Ωa
H(M)[1]

for arbitrary a ≥ 0 that satisfies the properties of {·, ·}.

Assumption 2: There exists a form H ∈ Ωn(M)[1], the
Hamiltonian, such that

ψ∗(dα) = dα + {α,H} ,

for every solution ψ and α ∈ Ωn−1
H (M).
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First extension of the brackets II

Current domain of definition:
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Examples (Hamiltonians)

(i) Hamilton equations:

H = Hdt − pidqi .

(ii) Hamilton–De Donder–Weyl equations:

H = Hdnx − pµ
i dy i ∧ dn−1xµ .

(iii) Yang–Mills equations

H =
(

−1
4F µν

i F i
µν + 1

2 f i
jkF µν

i Aj
µAk

ν

)
dnx−F µν

i dAi
µ∧dn−1xν .

Hamiltonian = Poincaré–Cartan form
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Final extension of the bracket I

Question: Can we interpret ψ∗(dα) = dα + {α,H}, for
arbitrary α ∈ Ωa

H(M)?
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Final extensions of the brackets II

Problem: There is no unique extension of the bracket to order
a < n − 1.

Nevertheless,

Theorem (de León, I.L. 2025)
There is a bijective correspondence between the possible
extensions of the bracket and affine maps

γ : {Hamiltonians} → {Ehresmann connections on τ : M → X}

such that γ(H) solves the Hamilton–De Donder–Weyl
equations of H, for every H.
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Final extension of the bracket III

Corollary
Let γ be such a map, H be a Hamiltonian, and ψ be an
integral section of γ(H). Then

ψ∗(dα) = dα + {α,H}γ ,

for every α ∈ Ωa
H(M).

Corollary
Let α be a special Hamiltonian form. Then, the bracket
{α,H}γ is independent of extension {·, ·}γ, for every
Hamiltonian H.
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Technical remarks

The construction was based on a generalization of the ♯
mapping associated to a graded Poisson bracket. In particular,
we generalized the techiniques employed in

1. Peter W. Michor. “A Generalization of Hamiltonian
Mechanics”. In: J. Geom. Phys. 2.2 (1985), pp. 67–82

2. Janusz Grabowski. “Z-Graded Extensions of Poisson
Brackets”. In: Rev. Math. Phys. 09.01 (1997), pp. 1–27

to extend the brackets.
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Final remarks and remaining questions

(i) The previous theoretical results seem to indicate that the
subalegbra of special Hamiltonian forms is of high
relevance to a particular field theory. We would like to
compute these subalgebras for several almost regular
Lagrangians to further study these classical field theories.

(ii) We would also like to investigate the relation between
these extensions and the instantanous split formalism.

(iii) It is also interesting to investigate the implications of this
algebraic structure in the study of momentum maps and
reduction, emplying the graded brackets.
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Thank you for your attention!
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