Extensions of brackets in classical field theories

Summer School of Geometry, Dynamics and Field Theory 2025

Rubén Izquierdo-López, joint work with M. de León 23-27 June, 2025

ICMAT-UNIR

Structure of the talk

Introduction to the problem

Geometric stage and algebraic structure of observables

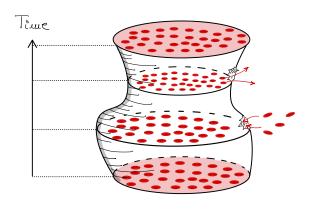
Hamiltonians and extensions of brackets

References

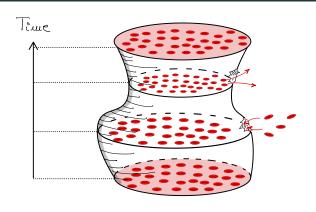
Introduction to the problem

Conserved quantities in field theories I

Conserved quantities in field theories I



Conserved quantities in field theories I

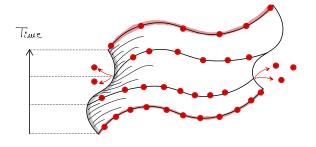


For
$$\alpha \in \Omega^{n-1}(M)$$
:

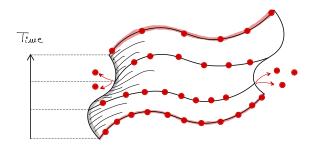
$$\int_{X_{t_1}} \alpha = \int_{X_{t_2}} \alpha - \int_{\partial X \times [t_1, t_2]} \alpha \iff d\alpha = 0.$$

Conserved quantities in field theories II

Conserved quantities in field theories II



Conserved quantities in field theories II



For
$$\alpha \in \Omega^a(M)$$
:

$$\int_{X_{t_1}} \alpha = \int_{X_{t_2}} \alpha - \int_{\partial X \times [t_1,t_2]} \alpha \iff \mathrm{d}\alpha = 0.$$

Proposed problem

Proposed problem

Problem (that we would like to solve): Find all conserved quantities \sim Find forms that are closed on solutions.

Proposed problem

Problem (that we would like to solve): Find all conserved quantities \sim Find forms that are closed on solutions.

Problem (that we solve): Determine evolution of forms via some bracket:

$$\psi^*(d\alpha) = d\alpha + \{\alpha, \mathcal{H}\},\,$$

where ψ is a solution of the corresponding PDE and α is some a-form.

Previous work:

- Igor V. Kanatchikov. "Canonical Structure of Classical Field Theory in the Polymomentum Phase Space". In: Rep. Math. Phys. 41.1 (1998), pp. 49–90
- Miguel Á. Berbel and Marco Castrillón-López.
 "Poisson-Poincaré Reduction for Field Theories".
 In: J. Geom. Phys. 191 (2023), p. 104879
- François Gay-Balmaz, Juan C. Marrero, and Nicolás Martínez-Alba. "A New Canonical Affine Bracket Formulation of Hamiltonian Classical Field Theories of First Order". In: Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118.3 (2024), p. 103

Geometric stage and algebraic structure of observables

General setup for field equations

General setup for field equations

Let $\tau: M \longrightarrow X$ denote a fibered manifold, $n = \dim X$. Let:

- (i) $\alpha_1, \ldots, \alpha_k \in \Omega^{n-1}(M)$ be semi-basic forms (representing observables).
- (ii) $\beta_1, \ldots, \beta_k \in \Omega^n(M)$ be basic forms (representing evolution of observables).

General setup for field equations

Let $\tau: M \longrightarrow X$ denote a fibered manifold, $n = \dim X$. Let:

- (i) $\alpha_1, \ldots, \alpha_k \in \Omega^{n-1}(M)$ be semi-basic forms (representing observables).
- (ii) $\beta_1, \ldots, \beta_k \in \Omega^n(M)$ be basic forms (representing evolution of observables).

We deal with partial differential equations with the following structure*:

$$\psi^*(\mathrm{d}\alpha_i) = \beta_i \circ \psi$$
, where $\psi: X \to M$ is a section.

- (i) Hamilton equations:
 - (a) Fiber bundle: $T^*Q \times \mathbb{R} \to \mathbb{R}$.
 - (b) Semi-basic forms: q^i , p_i , t.
 - (c) Basic forms: $\frac{\partial H}{\partial p_i} dt$, $-\frac{\partial H}{\partial q^i} dt$, dt.

- (i) Hamilton equations:
 - (a) Fiber bundle: $T^*Q \times \mathbb{R} \to \mathbb{R}$.
 - (b) Semi-basic forms: q^i , p_i , t.
 - (c) Basic forms: $\frac{\partial H}{\partial p_i} dt$, $-\frac{\partial H}{\partial q^i} dt$, dt.
- (ii) Hamilton–De Donder–Weyl equations:
 - (a) Fiber bundle: (covariant phase space) $\bigwedge_{1}^{n} Y / \bigwedge_{1}^{n} Y \to X$.
 - (b) Semi-basic forms: $y^{i}d^{n-1}x_{\mu}$, $p_{i}^{\mu}d^{n-1}x_{\mu}$, $\frac{1}{n}x^{\mu}d^{n-1}x_{\mu}$.
 - (c) Basic forms: $\frac{\partial H}{\partial p_i^{\mu}} \mathbf{d}^n x$, $-\frac{\partial H}{\partial y^i} \mathbf{d}^n x$, $\mathbf{d}^n x$.

- (i) Hamilton equations:
 - (a) Fiber bundle: $T^*Q \times \mathbb{R} \to \mathbb{R}$.
 - (b) Semi-basic forms: q^i , p_i , t.
 - (c) Basic forms: $\frac{\partial H}{\partial p_i} dt$, $-\frac{\partial H}{\partial q^i} dt$, dt.
- (ii) Hamilton-De Donder-Weyl equations:
 - (a) Fiber bundle: (covariant phase space) $\bigwedge_{1}^{n} Y / \bigwedge_{1}^{n} Y \to X$.
 - (b) Semi-basic forms: $y^i d^{n-1}x_\mu$, $p_i^\mu d^{n-1}x_\mu$, $\frac{1}{n}x^\mu d^{n-1}x_\mu$.
 - (c) Basic forms: $\frac{\partial H}{\partial p_i^H} d^n x$, $-\frac{\partial H}{\partial y^i} d^n x$, $d^n x$.
- (iii) Yang-Mills equations:
 - (a) Fiber bundle: $\operatorname{Im} \operatorname{leg}_{\mathcal{L}} \to X$.
 - (b) Semi-basic forms:

$$A^{i}_{\mu} d^{n-1} x_{\nu} - A^{i}_{\nu} d^{n-1} x_{\mu}, F^{\mu\nu}_{i} d^{n-1} x_{\nu}, \frac{1}{n} x^{\mu} d^{n-1} x_{\mu}.$$

(c) Basic forms: $\left(F_{\mu\nu}^i - f_{jk}^i A_{\nu}^j A_{\mu}^k \right) \mathrm{d}^n x, \, \left(-f_{jk}^i F_i^{\mu\nu} A_{\mu}^k \right) \mathrm{d}^n x, \, \mathrm{d}^n x.$

Algebraic structure of observables

Algebraic structure of observables

The observables $\alpha_1 \dots, \alpha_k \in \Omega^{n-1}(M)$ allow us to define the space of Hamiltonian forms:

$$\Omega_H^{n-1}(M) := \{ \alpha \in \Omega^{n-1}(M) \colon d\alpha \in \langle d\alpha_1, \dots d\alpha_k \rangle \}.$$

Algebraic structure of observables

The observables $\alpha_1 \dots, \alpha_k \in \Omega^{n-1}(M)$ allow us to define the space of Hamiltonian forms:

$$\Omega_H^{n-1}(M) := \{ \alpha \in \Omega^{n-1}(M) \colon d\alpha \in \langle d\alpha_1, \dots d\alpha_k \rangle \}.$$

Assumption 1: There is a bracket $\{\cdot,\cdot\}$ on the space of Hamiltonian forms satisfying the following properties:

- (i) It is skew-symmetric: $\{\alpha, \beta\} = -\{\beta, \alpha\}$.
- (ii) It satisfies the Jacobi identity up to an exact term:

$$\{\alpha,\{\beta,\gamma\}\}+\{\beta,\{\gamma,\alpha\}\}+\{\gamma,\{\alpha,\beta\}\}=\text{exact form}\,.$$

- (iii) It vanishes on closed forms: $d\alpha = 0 \implies \{\alpha, \beta\} = 0$.
- (iv) There is a correspondence $\alpha \mapsto X_{\alpha}$ such that $\{\alpha, \beta\} = \iota_{X_{\beta}} d\alpha$.

(i) Hamilton equations: Non vanishing brackets:

$$\{q^i,p_j\}=\delta^i_j.$$

(i) Hamilton equations: Non vanishing brackets:

$$\{q^i,p_j\}=\delta^i_j.$$

(ii) Hamilton–De Donder–Weyl equations: Non vanishing brackets:

$$\{y^i\mathrm{d}^{n-1}x_\mu,p_j^\nu\mathrm{d}^{n-1}x_\nu\}=\delta^i_j\mathrm{d}^{n-1}x_\nu\,.$$

(i) Hamilton equations: Non vanishing brackets:

$$\{q^i,p_j\}=\delta^i_j.$$

(ii) Hamilton–De Donder–Weyl equations: Non vanishing brackets:

$$\{y^i {\rm d}^{n-1} x_\mu, p_j^\nu {\rm d}^{n-1} x_\nu\} = \delta_j^i {\rm d}^{n-1} x_\nu \,.$$

(iii) Yang-Mills equations: Non vanishing brackets:

$$\{A^i_\mu\mathrm{d}^{n-1}x_\nu-A^i_\nu\mathrm{d}^{n-1}x_\mu,F^{\alpha\beta}_j\mathrm{d}^{n-1}x_\beta\}=\delta^i_j\delta^{\alpha\beta}_{\mu\nu}\mathrm{d}^{n-1}x_\beta\,.$$

Hamiltonian forms of arbitrary order I

Hamiltonian forms of arbitrary order I

Definition

We say that a form $\alpha \in \Omega^a(M)$ is special Hamiltonian if there is a semi-basic form $\beta \in \Omega^{a+1}(M)$ such that $\psi^*(\mathrm{d}\alpha) = \beta \circ \psi$, for every solution of the equations. The space of special Hamiltonian a-forms is denoted by $\widetilde{\Omega}_H^a(M)$.

Remark

If $\alpha \in \Omega^{n-1}(M)$ is special Hamiltonian, $\alpha \in \Omega^{n-1}_H(M)$.

Hamiltonian forms of arbitrary order I

Definition

We say that a form $\alpha \in \Omega^a(M)$ is special Hamiltonian if there is a semi-basic form $\beta \in \Omega^{a+1}(M)$ such that $\psi^*(\mathrm{d}\alpha) = \beta \circ \psi$, for every solution of the equations. The space of special Hamiltonian a-forms is denoted by $\widetilde{\Omega}_H^a(M)$.

Remark

If $\alpha \in \Omega^{n-1}(M)$ is special Hamiltonian, $\alpha \in \Omega^{n-1}_H(M)$.

Theorem (de León, I.L. 2025) $\alpha \in \Omega^a(M)$ is special Hamiltonian if and only if $\alpha \wedge \varepsilon \in \Omega^{n-1}_H(M)$, for every closed and basic $\varepsilon \in \Omega^{n-1-a}(M)$.

Hamiltonian forms of arbitrary order II

Hamiltonian forms of arbitrary order II

Definition

A form $\alpha \in \Omega_H^a(M)$ is called Hamiltonian if $\mathrm{d}\alpha \in \iota_{\bigwedge^{n-(a+1)}TM}\langle \mathrm{d}\alpha_1,\ldots,\mathrm{d}\alpha_k\rangle$. We denote by $\Omega_H^a(M)$ the space of Hamiltonian *a*-forms.

Proposition

$$\widetilde{\Omega}_H^a(M) \subseteq \Omega_H^a(M)$$

Hamiltonian forms of arbitrary order II

Definition

A form $\alpha \in \Omega_H^a(M)$ is called Hamiltonian if $\mathrm{d}\alpha \in \iota_{\bigwedge^{n-(a+1)}TM}\langle \mathrm{d}\alpha_1,\ldots,\mathrm{d}\alpha_k\rangle$. We denote by $\Omega_H^a(M)$ the space of Hamiltonian *a*-forms.

Proposition

$$\widetilde{\Omega}_H^a(M) \subseteq \Omega_H^a(M)$$

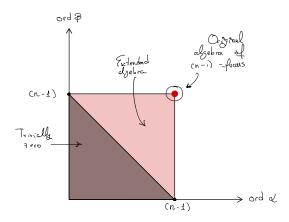
Theorem (de León, I.L. 2025)

There is an unique induced graded Poisson bracket

$$\Omega_H^a(M)\otimes\Omega_H^b(M)\to\Omega_H^{a+b-(n-1)}(M)$$

that mantains the properties of the original bracket of (n-1)-forms. Furthermore*, special Hamiltonian forms define a subalgebra.

Summary



brackets

Hamiltonians and extensions of

Domain of definition of current brackets

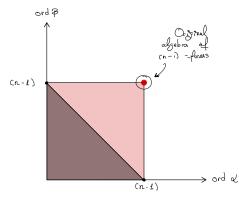
Domain of definition of current brackets

$$\begin{cases} \psi^*(\mathrm{d}\alpha) = \mathrm{d}\alpha + \{\alpha, \mathcal{H}\} \\ \deg\{\alpha, \mathcal{H}\} = \deg\alpha + \deg\mathcal{H} - (n-1) \end{cases} \implies \deg\mathcal{H} = n.$$
 But:

Domain of definition of current brackets

$$\begin{cases} \psi^*(d\alpha) = d\alpha + \{\alpha, \mathcal{H}\} \\ \deg\{\alpha, \mathcal{H}\} = \deg\alpha + \deg\mathcal{H} - (n-1) \end{cases} \implies \deg\mathcal{H} = n.$$

But:



First extension of the brackets I

Theorem (de León, I.L. 2025)

There exists an unique extension of $\{\cdot,\cdot\}$

$$\Omega^{n-1}_H(M)\otimes\Omega^{\mathfrak{a}}_H(M)[1]\to\Omega^{\mathfrak{a}}_H(M)[1]$$

for arbitrary a ≥ 0 that satisfies the properties of $\{\cdot,\cdot\}$.

First extension of the brackets I

Theorem (de León, I.L. 2025)

There exists an unique extension of $\{\cdot,\cdot\}$

$$\Omega^{n-1}_H(M)\otimes\Omega^a_H(M)[1]\to\Omega^a_H(M)[1]$$

for arbitrary a ≥ 0 that satisfies the properties of $\{\cdot,\cdot\}$.

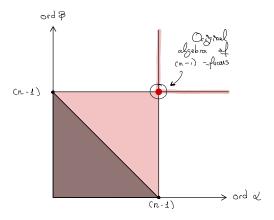
Assumption 2: There exists a form $\mathcal{H} \in \Omega^n(M)[1]$, the Hamiltonian, such that

$$\psi^*(d\alpha) = d\alpha + \{\alpha, \mathcal{H}\},\,$$

for every solution ψ and $\alpha \in \Omega_H^{n-1}(M)$.

First extension of the brackets II

Current domain of definition:



(i) Hamilton equations:

$$\mathcal{H}=H\mathrm{d}t-p_i\mathrm{d}q^i\,.$$

(i) Hamilton equations:

$$\mathcal{H} = H \mathrm{d} t - p_i \mathrm{d} q^i \,.$$

(ii) Hamilton–De Donder–Weyl equations:

$$\mathcal{H} = H \mathrm{d}^n x - p_i^{\mu} \mathrm{d} y^i \wedge \mathrm{d}^{n-1} x_{\mu}.$$

(i) Hamilton equations:

$$\mathcal{H} = H \mathrm{d}t - p_i \mathrm{d}q^i.$$

(ii) Hamilton-De Donder-Weyl equations:

$$\mathcal{H} = H \mathrm{d}^n x - p_i^{\mu} \mathrm{d} y^i \wedge \mathrm{d}^{n-1} x_{\mu} \,.$$

(iii) Yang–Mills equations

$$\mathcal{H} = \left(-\frac{1}{4} F_i^{\mu\nu} F_{\mu\nu}^i + \frac{1}{2} f_{jk}^i F_i^{\mu\nu} A_{\mu}^j A_{\nu}^k \right) d^n x - F_i^{\mu\nu} dA_{\mu}^i \wedge d^{n-1} x_{\nu} .$$

(i) Hamilton equations:

$$\mathcal{H} = H \mathrm{d}t - p_i \mathrm{d}q^i.$$

(ii) Hamilton-De Donder-Weyl equations:

$$\mathcal{H} = H \mathrm{d}^n x - p_i^{\mu} \mathrm{d} y^i \wedge \mathrm{d}^{n-1} x_{\mu} \,.$$

(iii) Yang–Mills equations

$$\mathcal{H} = \left(-\frac{1}{4} F_i^{\mu\nu} F_{\mu\nu}^i + \frac{1}{2} f_{jk}^i F_i^{\mu\nu} A_{\mu}^j A_{\nu}^k \right) d^n x - F_i^{\mu\nu} dA_{\mu}^i \wedge d^{n-1} x_{\nu} .$$

Hamiltonian = Poincaré-Cartan form

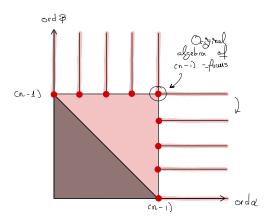
Final extension of the bracket I

Final extension of the bracket I

Question: Can we interpret $\psi^*(d\alpha) = d\alpha + \{\alpha, \mathcal{H}\}$, for arbitrary $\alpha \in \Omega^a_H(M)$?

Final extension of the bracket I

Question: Can we interpret $\psi^*(d\alpha) = d\alpha + \{\alpha, \mathcal{H}\}$, for arbitrary $\alpha \in \Omega^a_H(M)$?



Final extensions of the brackets II

Problem: There is no unique extension of the bracket to order a < n - 1.

Nevertheless,

Final extensions of the brackets II

Problem: There is no unique extension of the bracket to order a < n - 1.

Nevertheless.

Theorem (de León, I.L. 2025)

There is a bijective correspondence between the possible extensions of the bracket and affine maps

 $\gamma: \{\textit{Hamiltonians}\} \rightarrow \{\textit{Ehresmann connections on } \tau: \textit{M} \rightarrow \textit{X}\}$

such that $\gamma(\mathcal{H})$ solves the Hamilton–De Donder–Weyl equations of \mathcal{H} , for every \mathcal{H} .

Final extension of the bracket III

Corollary

Let γ be such a map, $\mathcal H$ be a Hamiltonian, and ψ be an integral section of $\gamma(\mathcal H)$. Then

$$\psi^*(d\alpha) = d\alpha + \{\alpha, \mathcal{H}\}_{\gamma},$$

for every $\alpha \in \Omega_H^a(M)$.

Final extension of the bracket III

Corollary

Let γ be such a map, $\mathcal H$ be a Hamiltonian, and ψ be an integral section of $\gamma(\mathcal H)$. Then

$$\psi^*(d\alpha) = d\alpha + \{\alpha, \mathcal{H}\}_{\gamma},$$

for every $\alpha \in \Omega_H^a(M)$.

Corollary

Let α be a special Hamiltonian form. Then, the bracket $\{\alpha, \mathcal{H}\}_{\gamma}$ is independent of extension $\{\cdot, \cdot\}_{\gamma}$, for every Hamiltonian \mathcal{H} .

Technical remarks

The construction was based on a generalization of the \$\pm\$ mapping associated to a graded Poisson bracket. In particular, we generalized the techniques employed in

- Peter W. Michor. "A Generalization of Hamiltonian Mechanics". In: J. Geom. Phys. 2.2 (1985), pp. 67–82
- Janusz Grabowski. "Z-Graded Extensions of Poisson Brackets". In: Rev. Math. Phys. 09.01 (1997), pp. 1–27

to extend the brackets.

Final remarks and remaining questions

- (i) The previous theoretical results seem to indicate that the subalegbra of special Hamiltonian forms is of high relevance to a particular field theory. We would like to compute these subalgebras for several almost regular Lagrangians to further study these classical field theories.
- ${
 m (ii)}$ We would also like to investigate the relation between these extensions and the instantanous split formalism.
- (iii) It is also interesting to investigate the implications of this algebraic structure in the study of momentum maps and reduction, emplying the graded brackets.

References

Main references

- Manuel de León and Rubén Izquierdo-López. "Graded Poisson and Graded Dirac Structures". In: J. Math. Phys. 66.2 (2025). 10.1063/5.0243128, p. 022901
- de León, Manuel and Izquierdo-López, Rubén. A description of classical field equations using extensions of graded Poisson brackets. To appear soon in arXiv. 2025

Thank you for your attention!