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The first jet bundle



Objective: Look for an intrinsic formulation of Classical Field
Theories (or calculus of variations)

Tool needed: A bundle that factorizes finite order differential
operators
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The first jet bundle I

Given a fibre bundle (fibered manifolds also work)

π : Y → X ,

we want a bundle
J1π → Y

that factorizes first order differential operators defined on sections

ϕ : X → Y .

Definition (First order differential operator)
A first order differential operator is a map:

D : {Sections of Y π−→ X} → {Sections of Z τ−→ X},

x = τ (Dϕ(x)) .

such that Dϕ(x) = Dψ(x) whenever

ϕ(x) = ψ(x), dxϕ = dxψ
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The first jet bundle II

In other (more understandable) words, we have an operation on sections,
where the value of Dϕ on x ∈ X only depends on x , ϕ(x), and dxϕ :

Problem: Find the manifold where D̃ is defined.
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The first jet bundle III

Definition (The first jet bundle)
Given a fibre bundle (or fibered manifold) Y π−→ X , define the first jet
bundle (as a set) as

J1π := {dxϕ,where ϕ : U → Y
∣∣
U is a local section}

Theorem
J1π can be endowed whith a smooth manifold structure with the
coordinates

(xµ, y i , z i
µ),

where z i
µ represents ∂ϕ

∂xµ , and

π(xµ, y i) = xµ

are fibered coordinates on Y π−→ X .
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The first jet bundle IV

Then, given a first order differential operator

D : {Sections of Y π−→ X} → {Sections of Z τ−→ X},

with coordinate expression

(Dϕ)(xµ) = D̃
(

xµ, ϕi ,
∂ϕi

∂xµ

)
,

it induces a bundle map over X

D̃ : J1π → Z ,

and
Dϕ = D̃ ◦ j1ϕ,

where j1ϕ : X → J1π is the first jet lift (a section storing derivatives up
to first order).
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The first jet bundle V
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The geometry of calculus of
variations



The geometric setting I

What to minimize/maximize? Sections!

Fixed some fibered manifold

Y πYX−−→ X with coordinates (xµ, y i) 7→ xµ,

we want to find a section

ϕ : X → Y , (xµ) 7→ (xµ, y i = ϕi(xµ))

minimizing/maximizing the functional

J [ϕ] =
∫

X
L
(

xµ, ϕi(xµ), ∂ϕ
i

∂xµ
,
∂2ϕi

∂xµ∂xν
, . . .

)
dnx .

We will focus on first order theories,

J [ϕ] =
∫

X
L
(

xµ, ϕi(xµ), ∂ϕ
i

∂xµ

)
dnx .

9



The geometric setting II

L(ϕ) = L(xµ, ϕi , ∂ϕi

∂xµ )dnx is called the Lagrangian density, and can be
interpreted as a first order differential operator

L : {Fields} → {n-forms on X},

L : {Sections of Y π−→ X} → {Sections of
n∧

X τ−→ X}.

Therefore, it factorizes through a fibered map (which will be denoted and
called the same)

L : J1π →
n∧

X
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The geometric setting III

We can interpret
L
(

xµ, ϕi(xµ), ∂ϕ
i

∂xµ

)
dnx

as an n-form on the first jet bundle

J1πYX with coordinates (xµ, y i , z i
µ).

We call it the Lagrangian density

L = L(zµ, y i , z i
µ)dnx .

We can rewrite the action as

J [ϕ] =
∫

X
(j1ϕ)∗L.
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The geometric setting IV

J [ϕ] =
∫

X
(j1ϕ)∗L,

where L ∈ Ωn(J1πYX ) is the Lagrangian dentisy. 12



The Euler-Lagrange equations I

If ϕ is a minimizer/maximizer (more generally, stationary section),
d
dt

∣∣∣∣
t=0

J [ϕt ] = 0, ∀ variation ϕt .
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The Euler-Lagrange equations II

Equivalently,
0 =

∫
X

d
dt

∣∣∣∣
t=0

(j1ϕt)∗L.

Locally, we get
∂L
∂y i = d

dxµ

(
∂L
∂z i

µ

)
.

What about intrinsic Euler-Lagrange equations?

If we define
ξ := d

dt

∣∣∣∣
t=0

ϕt = ξi ∂

∂y i ∈ X(Y ),

ξ(1) := d
dt

∣∣∣∣
t=0

j1ϕt = ξi ∂

∂y i +
(
∂ξi

∂xµ
+ ∂x i

∂y j z j
µ

)
∂

∂z j
µ

∈ X(J1πYX ).
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The Euler-Lagrange equations III

If we define
ξ := d

dt

∣∣∣∣
t=0

ϕt = ξi ∂

∂y i ∈ X(Y ),

ξ(1) := d
dt

∣∣∣∣
t=0

j1ϕt = ξi ∂

∂y i +
(
∂ξi

∂xµ
+ ∂x i

∂y j z j
µ

)
∂

∂z j
µ

∈ X(J1πYX ),

0 = d
dt

∣∣∣∣
t=0

J [ϕt ] =
∫

X
(j1ϕ)∗£ξ(1)L, for every vertical ξ ∈ X(Y )

Applying Stokes’ Theorem

0 =
∫

X
(j1ϕ)∗ιξ(1)dL +

∫
X

dιξ(1)L =
∫

X
(j1ϕ)∗ιξ(1)dL.
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The Euler-Lagrange equations IV

0 =
∫

X
(j1ϕ)∗ιξ(1)dL for every vertical ξ ∈ X(Y ).

Does not yield equations.

Idea: modify L

We want to find an n-form ΘL satisfying

(j1ϕ)∗L = (j1ϕ)∗ΘL

such that ϕ is an stationary field of the action if and only if

0 =
∫

X
(j1ϕ)∗ιηdΘL for every η ∈ X(J1πYX ).
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The Euler-Lagrange equations V

Proposition
There is such ΘL, and can be intrinsically defined (using the geometry of
J1πYX ).

Locally,
ΘL = ∂L

∂z i
µ

dy i ∧ dn−1xµ −
(
∂L
∂z i

µ

z i
µ − L

)
dnx

and it is called the Poincaré-Cartan form.

Corollary (Intrinsic Euler-Lagrange equations)
A field ϕ : X → Y is stationary if and only if it satifies

(j1ϕ)∗ιηdΘL = 0, for every η ∈ X(J1πYX ).

Define the multisymplectic form as

ΩL := −dΘL.
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Looking for solutions

To find solutions, we can look for distributions on J1πYX → such that an
integral section of such this distribution σ : X → J1πYX satisfies

σ∗ιηΩL = 0,∀η ∈ X(J1πYX ).

We can define such distributions via decomposable n-multivector fields

U = X1 ∧ · · · ∧ Xn.

Then, being stationary is characterized by ιUΩL = 0.
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Disclaimer

Giving such a multivector field U does not immediately give a solution:

• We need to make sure that the corresponding distribution is
integrable.

• Even if it is integrable, it may not be holonomic. That is, that the
corresponding integral section σ : X → J1πYX could fail to be the
jet lift of some section

ϕ : X → Y .

When L is regular, this is not an issue.
• Even if it satisfies the previous conditions, there may not exist global

sections of Y πYX−−→ X .
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Summary

• Fields, denoted by ϕ, are sections of a fibered manifold Y πYX−−→ X .
• A first order variational problem is defined through a Lagrangian

density L on J1πYX (which defines an n-form on X at each point),
and the action can be expressed as

J [ϕ] =
∫

X
(j1ϕ)∗L.

• If we define the multisymplectic form as

ΩL := −dΘL,

stationary fields are characterized by

(j1ϕ)∗ιηΩL = 0, for every η ∈ X(J1πYX ).

In particular, we can look for decomposable horizontal n-multivector
fields U satisfying

ιUΩL = 0.
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The Hamiltonian formalism



Hamiltonian formulation in Classical Mechanics I

Let Q be a configuration manifold. We can interpret Classical Mechanics
as a classical field theory

Then,
J1π = TQ × R.
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Hamiltonian formalism in Classical Mechanics II

The Hamiltonian formalism is obtained via the Legendre transformation,

TQ × R LegL−−→ T ∗Q × R × R,

(t, qi , q̇i) 7→
(

t, qi , pi = ∂L
∂q̇i , p

1 = − ∂L
∂q̇i q̇i + L

)
.

The Poincaré-Cartan form in this case is

θL = ∂L
∂q̇i dqi −

(
∂L
∂q̇i q̇i − L

)
dt,

and can be obtained as
θ = Leg∗

L θ,

where
θ = pidqi + pdt.

1We will deal with this annoying parameter later
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Hamiltonian formalism in Classical Field Theory I

We have
t ∼ xµ, qi ∼ ϕi = y i , q̇i ∼ ∂ϕi

∂xµ
= z i

µ.

The generalization of the Legendre transformation to fields is:

(xµ, y i , z i
µ) 7→

(
zµ, y i , pµ

i = ∂L
∂z i

µ

, p = − ∂L
∂z i

µ

z i
µ + L

)
,

and the Poincaré-Cartan form

ΘL = ∂L
∂z i

µ

dy i ∧ dn−1xµ −
(
∂L
∂z i

µ

z i
µ − L

)
dnx

can be obtained as
ΘL = Leg∗

L Θ,

where
Θ = pµ

i dy i ∧ dn−1xµ + pdnx .
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Hamiltonian formalism in Classical Field Theory II

Can LegL be interpreted as an intrinsic map?

Yes!
LegL : J1π →

n∧
2

Y ,

where
n∧
2

Y = {α ∈
n∧

Y , ιe1∧e2α = 0, ei ∈ ker dπ}.

Esentially, all forms that have the following local expression

α = pdnx + pµ
i dy i ∧ dn−1xµ.

Furthermore, we can define LegL intrinsically (but won’t).
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Hamiltonian formalism in Classical Field Theory III

Θ = pdnx + pµ
i dy i ∧ dn−1xµ

is the tautological form on
∧m

2 Y intrinsically defined as

Θ|α(v1, . . . , vm) = α(τ∗v1, . . . , τ∗vm),

where α ∈
∧m

2 Y , v1, . . . , vm ∈ Tα

∧m
2 Y , and τ denotes the canonical

projection τ :
∧m

2 Y → Y .

With this formalism, the multisymplectic form is

Ω = −dp ∧ dnx − dpµ
i ∧ dy i ∧ dn−1xµ,

and satisfies
ΩL = Leg∗

L Ω.
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Hamiltonian formalism in Classical Field Theory IV

There is a problem...

The Legendre transformation cannot define a diffeomorphism, since

dim J1π = dim
m∧
2

Y − 1.

However, quotienting
m∧
2

Y τ−→
m∧
2

Y /
m∧
1

Y ,

where
∧m

1 Y is the set of forms with the expression α = pdnx , we can
have

dim J1π = dim
m∧
2

Y /
m∧
1

Y ,

and we have the possibility for

legL := τ ◦ LegL

to be a diffeomorphism.
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Hamiltonian formalism in Classical Field Theory V

In coordinates

leg∗
L pµ

i = ∂L
∂z i

µ

, leg∗
L y i = y i , leg∗

L xµ = xµ,

which in the case of Classical mechanics gives the original Legendre
transformation (with no p involved).
When the Lagrangian is regular, that is, when legL defines a
diffeomorphism, we can define the Hamiltonian

h := LegL ◦ (legL)−1
,

which is a section of
m∧
2

Y τ−→
m∧
2

Y /
m∧
1

Y .

Locally,

h(xµ, y i , pµ
i ) =

(
xµ, y i , pµ

i , p = −H = − ∂L
∂z i

µ

z i
µ + L

)
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Hamiltonian formalism in Classical Field Theory VI

Theorem
In the regular case, solving the Euler-Lagrange equations

d
dxµ

(
∂L
∂z i

µ

)
= ∂L
∂y i , or (j1ϕ)∗ιξΩL = 0,∀ξ ∈ X(J1π)

is equivalent to solving the Hamilton-De Donder-Weyl equations

∂y i

∂xµ
= ∂H
∂pµ

i
,
∂pµ

i
∂xµ

= −∂H
∂y i , or ψ∗ιξΩh = 0, ∀ξ ∈ X

( m∧
2

Y /
m∧
1

Y
)
,

for ψ : X →
∧m

2 Y /
∧m

1 Y a section. The correspondence is given by

ψ = legL ◦j1ϕ.
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Summary (regular case)

The following forms characterize the original variational problem

Ωh = h∗Ω,
ΩL = Leg∗

L Ω = leg∗
L Ωh.
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Multisymplectic Geometry and
graded Poisson Geometry



Basic definitions I

Definition
A multisymplectic manifold of order n is a pair (M, ω), where M is a
smooth manifold, and ω is a closed (n + 1)−form.

An immediate example is the bundle of n-forms on a manifold Q.

M :=
n∧

T ∗Q τ−→ Q

has a canonical n-form,

Θ|α(v1, . . . , vn) := α(τ∗v1, . . . , τ∗vn)

and
Ω := −dΘ

defines a multisymplectic structure on M.
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Basic definitions II

Definition
Let (M, ω) be a multisymplectic manifold of order n. A q-multivector
field U on M (q ≤ n) is called Hamiltonian if

ιω = dα,

for certain (n − q)-form α, which will also be called Hamiltonian.

Denote by
Ωa−1

H (M)
the space of all Hamiltonian forms.

• Top degree Hamiltonian multivector fields (n-multivector fields)
represent solutions to the variational problem,

ιUω = dH,H ∈ C∞(M).

• Hamiltonian vector fields X ∈ X(M) are symmetries, £Xω = 0 and
the corresponding (n − 1)−form can be thought of as the Noether
current of the symmetry. 31



Brackets I

The Poisson bracket from Classical Mechanics is:

{f , g}• = ∂f
∂qi

∂g
∂pi

− ∂g
∂qi

∂f
∂qi ,

which is characterized by the Poisson bivector

Λ = ∂

∂qi ∧ ∂

∂pi
, {f , g}• = Λ(df , dg).

Definition (Poisson bracket)
A Poisson bracket on M is a Lie algebra structure on C∞(M), {·, ·}• that
also satisfies Leibniz identity {fg , h}• = f {g , h}• + g{f , h}•.

In fact, there is an equivalence

{Poisson brackets} ∼= {Bivector fields Λ satisfying [Λ,Λ] = 0}
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Brackets II

We want to find the analogue concepts in multisymplectic field theory:

1. Find the concept of brackets in field theory;
2. Find the tensorial anaolgue to the Poisson bivector;
3. Prove these two coincide.
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Brackets III

Proposition
Let (M, ω) be a multisymplectic manifold and α, β be Hamiltonian
forms, with Hamiltonian multivector fields, X , Y , respectively. Then

{α, β} := (−1)k−1−ord βιY ιXω

is a Hamiltonian form. Its Hamiltonian multivector field is −[X ,Y ] (the
Schouten-Nijenhuis bracket).

Definition
Define the Poisson bracket of two Hamiltonian forms by

{α, β} := (−1)(k−1−ord β)ιY ιXω,

which is again Hamiltonian by the previous proposition.
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Brackets IV

Defining a new notion of degree, degα := k − 1 − ordα, the bracket
satisfies:

• It is graded:
deg{α, β} = degα+ deg β;

• It is graded-skew-symmetric:

{α, β} = −(−1)deg α deg β{β, α};

• It is local: If dα|x = 0, {α, β}|x = 0
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Brackets V

• It satisfies Leibniz identity: Let βj ∈ Ωb−1
H (M), γj ∈ Ωc−1

H (M). If
βj ∧ dγ ∈ Ωb+c−1

H (M), then, for a = k,

{βj ∧ dγj , α} = {βj , α} ∧ dγj + (−1)k−deg βj
dβ ∧ {γj , α};

• It is invariant by symmetries: If X ∈ X(M) and £Xα = 0, then
ιXα ∈ Ωa−2

H (M) and

{ιXα, β} = (−1)deg βιX {α, βj};

• It satisfies graded Jacobi identity (up to an exact term):

(−1)deg α deg γ{{α, β}, γ} + cyclic terms = exact form.
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Brackets VI

Then we can define:

Definition (Poisson bracket)
Let Sk ⊆

∧k M be a nondegenerate2 subbundle satisfying that

Sa := {α = ιUγ,U ∈
∨
k−a

M, α ∈ Sk} ⊆
a∧

M

defines a subbundle for each a. Then, a Poisson bracket is a bilinear
operation

Ωa−1
H (M) ⊗ Ωb−1

H (M) {·,·}−−−→ Ωa+b−(k+1)(M)

that satisfies the previous list of properties.

2that is, ιv Sk = 0, v ∈ TM implies v = 0
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Brackets VII

What is the analogue to the Poisson tensor?

In Symplectic Geometry, the Poisson bivector can be thought of as the
inverse of the map induced by the contraction

TM → T ∗M, v 7→ ιvω.

Then, the natural analogue would be the "inverse" of

TM →
k∧

M, v 7→ ιvω.

Definition (Almost Poisson tensor)
An almost Poisson tensor of order k is am skew-symmetric linear bundle
map

♯ : Sk → TM,

where Sk ⊆
∧k M is a non-degenerate subbundle.
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Brackets VIII

What about integrability?

Definition (Poisson tensor)
We say that an almost Poisson tensor of order k

♯ : Sk → TM

is integrable if it satisfies the following property. For α, β taking values in
Sk , if we define

θ := £♯(α)β − ι♯(β)dα,

we have θ ∈ Sk and
♯(θ) = [♯(α), ♯(β)].

In this case we call ♯ : Sk → TM a Poisson tensor.
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Brackets IX

Then we have the following results:

Theorem
A Poisson tensor ♯ : Sk → M determines a multisymplectic foliation of
M, (F , ωF ).

Theorem
Given a non-degenrate multisymplectic foliation (F , ωF ), if

dimx F −
(

dimx F
k

)
remains constant on M, it arises from a (non-necessarily unique) Poisson
tensor.
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Brackets X

Given a Poisson tensor ♯ : Sk → TM, we have:
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Brackets XI

Furthermore,

Theorem
Under certain integrability conditions on the space Sk (which applies, for
instance, in the Extended Hamiltonian formalism), we have

{Poisson brackets of order k} ∼= {Poisson tensors of order k}

As an academic example, a manifold M foliated by (k + 1)-dimensional
manifolds together with volume forms admit a Poisson tensor of order k.
And, in particular, have associated the Poisson bracket as an algebraic
invariant.
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Brackets XII

As an example:
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Conclusions



Conclusions

• The multisymplectic formalism of Classical Field Theories gives an
intrinsic formulation of the variational problem.

• It is completely characterized by a closed (n + 1)−form, ΩL, called
the multisymplectic form.

• This motivates an abstract study of manifold together with closed
forms (M, ω).

• Although too general, this study allows for a better understanding of
Classical Field Theory (and some geometric byproducts are
obtained).

• A recent example can be seen in the generalization of the geometry
of Poisson brackets to multisymplectic manifolds, giving the correct
notion of both the Poisson bracket and tensor.
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Thank you for your attention!
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