Geometría Multisimpléctica, el marco para Teorías Clásicas de Campos

Seminario de doctorandos

Rubén Izquierdo-López

19 September, 2024

ICMAT-UCM

Structure of the talk

The first jet bundle

The geometry of calculus of variations

- 2.1 The geometric setting
- 2.2 The Euler-Lagrange equations

The Hamiltonian formalism

- 3.1 The Hamiltonian formalism in Classical Mechanics
- 3.2 The Hamiltonian formalism in Classical Field Theory

Multisymplectic Geometry and graded Poisson Geometry

- 4.1 Basic definitions
- 4.2 Brackets

Conclusions

The first jet bundle

Objective: Look for an intrinsic formulation of Classical Field Theories (or calculus of variations)

Tool needed: A bundle that factorizes finite order differential operators

The first jet bundle I

Given a fibre bundle (fibered manifolds also work)

$$\pi: Y \to X,$$

we want a bundle

 $J^1\pi \to Y$

that factorizes first order differential operators defined on sections

 $\phi:X\to Y.$

Definition (First order differential operator) A first order differential operator is a map:

 $D: \{\text{Sections of } Y \xrightarrow{\pi} X\} \to \{\text{Sections of } Z \xrightarrow{\tau} X\},\$

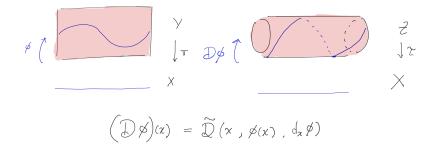
$$x = \tau \left(D\phi(x) \right).$$

such that $D\phi(x) = D\psi(x)$ whenever

$$\phi(x) = \psi(x), \ d_x \phi = d_x \psi$$

The first jet bundle II

In other (more understandable) words, we have an operation on sections, where the value of $D\phi$ on $x \in X$ only depends on x, $\phi(x)$, and $d_x\phi$:



Problem: Find the manifold where D is defined.

The first jet bundle III

Definition (The first jet bundle)

Given a fibre bundle (or fibered manifold) $Y \xrightarrow{\pi} X$, define the first jet bundle (as a set) as

$$J^{1}\pi := \{d_{x}\phi, \text{where } \phi : U \to Y|_{U} \text{ is a local section}\}$$

Theorem

 $J^{1}\pi$ can be endowed whith a smooth manifold structure with the coordinates

 $(x^{\mu}, y^{i}, z^{i}_{\mu}),$

where z^i_μ represents $rac{\partial \phi}{\partial x^\mu}$, and

$$\pi(x^{\mu}, y^{i}) = x^{\mu}$$

are fibered coordinates on $Y \xrightarrow{\pi} X$.

The first jet bundle IV

Then, given a first order differential operator

 $D: \{\text{Sections of } Y \xrightarrow{\pi} X\} \to \{\text{Sections of } Z \xrightarrow{\tau} X\},\$

with coordinate expression

$$(D\phi)(x^{\mu}) = \widetilde{D}\left(x^{\mu}, \phi^{i}, \frac{\partial \phi^{i}}{\partial x^{\mu}}\right),$$

it induces a bundle map over X

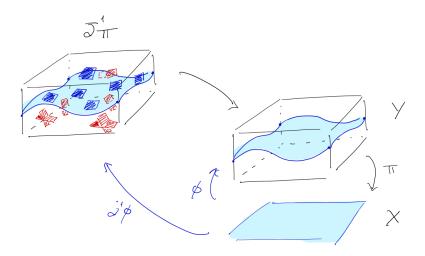
$$\widetilde{D}: J^1\pi \to Z,$$

and

$$D\phi = \widetilde{D} \circ j^1 \phi,$$

where $j^1\phi: X \to J^1\pi$ is the first jet lift (a section storing derivatives up to first order).

The first jet bundle V



The geometry of calculus of variations

What to minimize/maximize? Sections!

Fixed some fibered manifold

$$Y \xrightarrow{\pi_{YX}} X$$
 with coordinates $(x^{\mu}, y^{i}) \mapsto x^{\mu}$,

we want to find a section

$$\phi: X \to Y, \ (x^{\mu}) \mapsto (x^{\mu}, y^{i} = \phi^{i}(x^{\mu}))$$

minimizing/maximizing the functional

$$\mathcal{J}[\phi] = \int_{X} L\left(x^{\mu}, \phi^{i}(x^{\mu}), \frac{\partial \phi^{i}}{\partial x^{\mu}}, \frac{\partial^{2} \phi^{i}}{\partial x^{\mu} \partial x^{\nu}}, \dots\right) d^{n}x.$$

We will focus on first order theories,

$$\mathcal{J}[\phi] = \int_{X} L\left(x^{\mu}, \phi^{i}(x^{\mu}), \frac{\partial \phi^{i}}{\partial x^{\mu}}\right) d^{n}x.$$

 $\mathcal{L}(\phi) = L(x^{\mu}, \phi^{i}, \frac{\partial \phi^{i}}{\partial x^{\mu}})d^{n}x$ is called the Lagrangian density, and can be interpreted as a first order differential operator

 $\mathcal{L}: \{\mathsf{Fields}\} \to \{\mathit{n}\text{-forms on } X\},\$

$$\mathcal{L}: \{\text{Sections of } Y \xrightarrow{\pi} X\} \to \{\text{Sections of } \bigwedge^n X \xrightarrow{\tau} X\}.$$

Therefore, it factorizes through a fibered map (which will be denoted and called the same)

$$\mathcal{L}: J^1\pi \to \bigwedge^n X$$

The geometric setting III

We can interpret

$$L\left(x^{\mu},\phi^{i}(x^{\mu}),\frac{\partial\phi^{i}}{\partial x^{\mu}}
ight)d^{n}x$$

as an *n*-form on the first jet bundle

$$J^1 \pi_{YX}$$
 with coordinates $(x^{\mu}, y^i, z^i_{\mu})$.

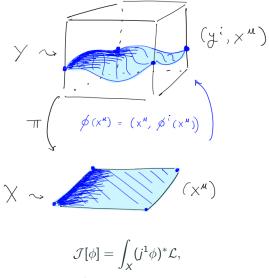
We call it the Lagrangian density

$$\mathcal{L} = L(z^{\mu}, y^{i}, z^{i}_{\mu})d^{n}x.$$

We can rewrite the action as

$$\mathcal{J}[\phi] = \int_X (j^1 \phi)^* \mathcal{L}.$$

The geometric setting IV

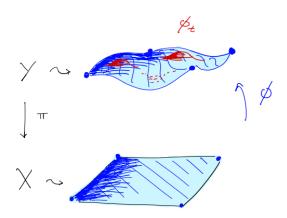


where $\mathcal{L} \in \Omega^n(J^1\pi_{YX})$ is the Lagrangian dentisy.

The Euler-Lagrange equations I

If ϕ is a minimizer/maximizer (more generally, stationary section),

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\mathcal{J}[\phi_t]=0,\,\forall\,\,\mathrm{variation}\,\,\phi_t.$$



Equivalently,

$$0 = \int_X \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} (j^1 \phi_t)^* \mathcal{L}.$$

Locally, we get

$$\frac{\partial L}{\partial y^i} = \frac{\mathrm{d}}{\mathrm{d}x^{\mu}} \left(\frac{\partial L}{\partial z^i_{\mu}} \right)$$

What about intrinsic Euler-Lagrange equations?

If we define

$$\begin{split} \boldsymbol{\xi} &:= \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \boldsymbol{\phi}_t = \boldsymbol{\xi}^i \frac{\partial}{\partial y^i} \in \mathfrak{X}(Y), \\ \boldsymbol{\xi^{(1)}} &:= \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} j^1 \boldsymbol{\phi}_t = \boldsymbol{\xi}^i \frac{\partial}{\partial y^i} + \left(\frac{\partial \boldsymbol{\xi}^i}{\partial x^{\mu}} + \frac{\partial x^i}{\partial y^j} \boldsymbol{z}_{\mu}^j \right) \frac{\partial}{\partial \boldsymbol{z}_{\mu}^j} \in \mathfrak{X}(J^1 \pi_{YX}). \end{split}$$

The Euler-Lagrange equations III

If we define

$$\begin{split} \boldsymbol{\xi} &:= \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \boldsymbol{\phi}_t = \boldsymbol{\xi}^i \frac{\partial}{\partial y^i} \in \mathfrak{X}(Y), \\ \boldsymbol{\xi^{(1)}} &:= \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} j^1 \boldsymbol{\phi}_t = \boldsymbol{\xi}^i \frac{\partial}{\partial y^i} + \left(\frac{\partial \boldsymbol{\xi}^i}{\partial x^{\mu}} + \frac{\partial x^i}{\partial y^j} \boldsymbol{z}^j_{\mu} \right) \frac{\partial}{\partial \boldsymbol{z}^j_{\mu}} \in \mathfrak{X}(J^1 \pi_{YX}), \end{split}$$

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \mathcal{J}[\phi_t] = \int_X (j^1 \phi)^* \mathcal{E}_{\boldsymbol{\xi}^{(1)}} \mathcal{L}, \text{ for every vertical } \boldsymbol{\xi} \in \mathfrak{X}(Y)$$

Applying Stokes' Theorem

$$0 = \int_X (j^1 \phi)^* \iota_{\boldsymbol{\xi}^{(1)}} d\mathcal{L} + \int_X d\iota_{\boldsymbol{\xi}^{(1)}} \mathcal{L} = \int_X (j^1 \phi)^* \iota_{\boldsymbol{\xi}^{(1)}} d\mathcal{L}.$$

$$0 = \int_X (j^1 \phi)^* \iota_{\boldsymbol{\xi}^{(1)}} d\mathcal{L} \text{ for every vertical } \boldsymbol{\xi} \in \mathfrak{X}(Y).$$

Does not yield equations.

Idea: modify \mathcal{L}

We want to find an *n*-form $\Theta_{\mathcal{L}}$ satisfying

$$(j^1\phi)^*\mathcal{L} = (j^1\phi)^*\Theta_{\mathcal{L}}$$

such that ϕ is an stationary field of the action if and only if

$$0 = \int_X (j^1 \phi)^* \iota_\eta d\Theta_{\mathcal{L}}$$
 for every $\eta \in \mathfrak{X}(J^1 \pi_{YX}).$

Proposition

There is such $\Theta_{\mathcal{L}}$, and can be intrinsically defined (using the geometry of $J^1 \pi_{YX}$).

Locally,

$$\Theta_{\mathcal{L}} = \frac{\partial L}{\partial z_{\mu}^{i}} dy^{i} \wedge d^{n-1} x_{\mu} - \left(\frac{\partial L}{\partial z_{\mu}^{i}} z_{\mu}^{i} - L\right) d^{n} x$$

and it is called the Poincaré-Cartan form.

Corollary (Intrinsic Euler-Lagrange equations) A field $\phi: X \to Y$ is stationary if and only if it satifies

$$(j^1\phi)^*\iota_\eta d\Theta_{\mathcal{L}} = 0$$
, for every $\eta \in \mathfrak{X}(J^1\pi_{YX})$.

Define the multisymplectic form as

$$\Omega_{\mathcal{L}}:=-d\Theta_{\mathcal{L}}.$$

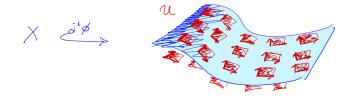
Looking for solutions

To find solutions, we can look for distributions on $J^1\pi_{YX} \rightarrow$ such that an integral section of such this distribution $\sigma: X \rightarrow J^1\pi_{YX}$ satisfies

$$\sigma^*\iota_\eta\Omega_{\mathcal{L}}=0, \forall \eta\in\mathfrak{X}(J^1\pi_{YX}).$$

We can define such distributions via decomposable *n*-multivector fields

$$U=X_1\wedge\cdots\wedge X_n.$$



Then, being stationary is characterized by $\iota_U \Omega_{\mathcal{L}} = 0$.

Giving such a multivector field U does not immediately give a solution:

- We need to make sure that the corresponding distribution is integrable.
- Even if it is integrable, it may not be holonomic. That is, that the corresponding integral section $\sigma: X \to J^1 \pi_{YX}$ could fail to be the jet lift of some section

$$\phi: X \to Y.$$

When \mathcal{L} is regular, this is not an issue.

Even if it satisfies the previous conditions, there may not exist global sections of Y ^{π_{YX}}/_X.

Summary

- Fields, denoted by ϕ , are sections of a fibered manifold $Y \xrightarrow{\pi_{YX}} X$.
- A first order variational problem is defined through a Lagrangian density \mathcal{L} on $J^1 \pi_{YX}$ (which defines an *n*-form on X at each point), and the action can be expressed as

$$\mathcal{J}[\phi] = \int_X (j^1 \phi)^* \mathcal{L}$$

If we define the multisymplectic form as

$$\Omega_{\mathcal{L}}:=-d\Theta_{\mathcal{L}},$$

stationary fields are characterized by

$$(j^1\phi)^*\iota_\eta\Omega_{\mathcal{L}}=0$$
, for every $\eta\in\mathfrak{X}(J^1\pi_{YX})$.

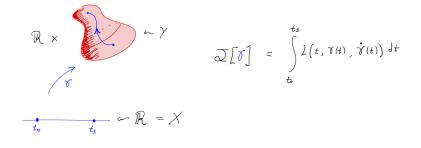
In particular, we can look for decomposable horizontal n-multivector fields U satisfying

$$\iota_U\Omega_{\mathcal{L}}=0.$$

The Hamiltonian formalism

Hamiltonian formulation in Classical Mechanics I

Let Q be a configuration manifold. We can interpret Classical Mechanics as a classical field theory



Then,

 $J^1\pi = TQ \times \mathbb{R}.$

Hamiltonian formalism in Classical Mechanics II

The Hamiltonian formalism is obtained via the Legendre transformation,

$$TQ \times \mathbb{R} \xrightarrow{\operatorname{Leg}_L} T^*Q \times \mathbb{R} \times \mathbb{R},$$

$$(t,q^i,\dot{q}^i)\mapsto\left(t,q^i,p_i=\frac{\partial L}{\partial \dot{q}^i},p^1=-\frac{\partial L}{\partial \dot{q}^i}\dot{q}^i+L
ight).$$

The Poincaré-Cartan form in this case is

$$heta_L = rac{\partial L}{\partial \dot{q}^i} dq^i - \left(rac{\partial L}{\partial \dot{q}^i} \dot{q}^i - L
ight) dt,$$

and can be obtained as

$$\theta = \operatorname{Leg}_{L}^{*} \theta,$$

where

$$\theta = p_i dq^i + p dt.$$

 $^{^{1}}$ We will deal with this annoying parameter later

Hamiltonian formalism in Classical Field Theory I

We have

$$t \sim x^{\mu}, \ q^{i} \sim \phi^{i} = y^{i}, \ \dot{q}^{i} \sim \frac{\partial \phi^{i}}{\partial x^{\mu}} = z^{i}_{\mu}.$$

The generalization of the Legendre transformation to fields is:

$$(x^{\mu}, y^{i}, z^{i}_{\mu}) \mapsto \left(z^{\mu}, y^{i}, p^{\mu}_{i} = \frac{\partial L}{\partial z^{i}_{\mu}}, p = -\frac{\partial L}{\partial z^{i}_{\mu}} z^{i}_{\mu} + L\right),$$

and the Poincaré-Cartan form

$$\Theta_{\mathcal{L}} = \frac{\partial L}{\partial z_{\mu}^{i}} dy^{i} \wedge d^{n-1} x_{\mu} - \left(\frac{\partial L}{\partial z_{\mu}^{i}} z_{\mu}^{i} - L\right) d^{n} x_{\mu}$$

can be obtained as

$$\Theta_{\mathcal{L}} = \mathsf{Leg}_{\mathcal{L}}^* \, \Theta,$$

where

$$\Theta = p_i^{\mu} dy^i \wedge d^{n-1} x_{\mu} + p d^n x.$$

Can $Leg_{\mathcal{L}}$ be interpreted as an intrinsic map?

Yes!

$$\operatorname{Leg}_{\mathcal{L}}: J^1\pi \to \bigwedge_2^n Y,$$

where

$$\bigwedge_{2}^{n} Y = \{ \alpha \in \bigwedge^{n} Y, \ \iota_{e_{1} \wedge e_{2}} \alpha = 0, e_{i} \in \ker d\pi \}.$$

Esentially, all forms that have the following local expression

$$\alpha = pd^n x + p_i^{\mu} dy^i \wedge d^{n-1} x_{\mu}.$$

Furthermore, we can define $\text{Leg}_{\mathcal{L}}$ intrinsically (but won't).

$$\Theta = p d^n x + p^\mu_i dy^i \wedge d^{n-1} x_\mu$$

is the tautological form on $\bigwedge_2^m Y$ intrinsically defined as

$$\Theta|_{\alpha}(\mathbf{v}_1,\ldots,\mathbf{v}_m)=\alpha(\tau_*\mathbf{v}_1,\ldots,\tau_*\mathbf{v}_m),$$

where $\alpha \in \bigwedge_2^m Y$, $v_1, \ldots, v_m \in T_\alpha \bigwedge_2^m Y$, and τ denotes the canonical projection $\tau : \bigwedge_2^m Y \to Y$.

With this formalism, the multisymplectic form is

$$\Omega = -dp \wedge d^{n}x - dp_{i}^{\mu} \wedge dy^{i} \wedge d^{n-1}x_{\mu},$$

and satisfies

$$\Omega_{\mathcal{L}} = \mathsf{Leg}_{\mathcal{L}}^* \, \Omega.$$

Hamiltonian formalism in Classical Field Theory IV

There is a problem...

The Legendre transformation cannot define a diffeomorphism, since

$$\dim J^1\pi = \dim \bigwedge_2^m Y - 1.$$

However, quotienting

$$\bigwedge_{2}^{m} Y \xrightarrow{\tau} \bigwedge_{2}^{m} Y / \bigwedge_{1}^{m} Y,$$

where $\bigwedge_{1}^{m} Y$ is the set of forms with the expression $\alpha = pd^{n}x$, we can have

$$\dim J^1\pi = \dim \bigwedge_2^m Y / \bigwedge_1^m Y,$$

and we have the possibility for

$$\mathsf{leg}_{\mathcal{L}} := \tau \circ \mathsf{Leg}_{\mathcal{L}}$$

to be a diffeomorphism.

Hamiltonian formalism in Classical Field Theory V

In coordinates

$$\log_{\mathcal{L}}^{*} p_{i}^{\mu} = \frac{\partial L}{\partial z_{\mu}^{i}}, \log_{\mathcal{L}}^{*} y^{i} = y^{i}, \log_{\mathcal{L}}^{*} x^{\mu} = x^{\mu},$$

which in the case of Classical mechanics gives the original Legendre transformation (with no p involved).

When the Lagrangian is regular, that is, when $\log_{\mathcal{L}}$ defines a diffeomorphism, we can define the Hamiltonian

$$h:=\operatorname{Leg}_{\mathcal{L}}\circ\left(\operatorname{leg}_{\mathcal{L}}\right)^{-1},$$

which is a section of

$$\bigwedge_{2}^{m} Y \xrightarrow{\tau} \bigwedge_{2}^{m} Y / \bigwedge_{1}^{m} Y.$$

Locally,

$$h(x^{\mu}, y^{i}, p^{\mu}_{i}) = \left(x^{\mu}, y^{i}, p^{\mu}_{i}, p = -H = -\frac{\partial L}{\partial z^{i}_{\mu}}z^{i}_{\mu} + L\right)$$

Theorem

In the regular case, solving the Euler-Lagrange equations

$$\frac{\mathrm{d}}{\mathrm{d}x^{\mu}}\left(\frac{\partial L}{\partial z_{\mu}^{i}}\right) = \frac{\partial L}{\partial y^{i}}, \text{ or } (j^{1}\phi)^{*}\iota_{\xi}\Omega_{\mathcal{L}} = 0, \forall \xi \in \mathfrak{X}(J^{1}\pi)$$

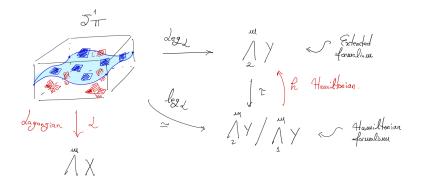
is equivalent to solving the Hamilton-De Donder-Weyl equations

$$\frac{\partial y^{i}}{\partial x^{\mu}} = \frac{\partial H}{\partial p_{i}^{\mu}}, \ \frac{\partial p_{i}^{\mu}}{\partial x^{\mu}} = -\frac{\partial H}{\partial y^{i}}, \ \text{or} \ \psi^{*}\iota_{\xi}\Omega_{h} = 0, \ \forall \xi \in \mathfrak{X}\left(\bigwedge_{2}^{m} Y/\bigwedge_{1}^{m} Y\right),$$

for $\psi: X \to \bigwedge_2^m Y / \bigwedge_1^m Y$ a section. The correspondence is given by

$$\psi = \log_{\mathcal{L}} \circ j^1 \phi.$$

Summary (regular case)



The following forms characterize the original variational problem

$$\begin{split} \Omega_h &= h^* \Omega, \\ \Omega_{\mathcal{L}} &= \operatorname{Leg}_{\mathcal{L}}^* \Omega = \operatorname{leg}_{\mathcal{L}}^* \Omega_h. \end{split}$$

Multisymplectic Geometry and graded Poisson Geometry

Definition

A multisymplectic manifold of order *n* is a pair (M, ω) , where *M* is a smooth manifold, and ω is a closed (n + 1)-form.

An immediate example is the bundle of n-forms on a manifold Q.

$$M:=\bigwedge^n T^*Q\xrightarrow{\tau} Q$$

has a canonical n-form,

$$\Theta|_{\alpha}(\mathbf{v}_1,\ldots,\mathbf{v}_n) := \alpha(\tau_*\mathbf{v}_1,\ldots,\tau_*\mathbf{v}_n)$$

and

$$\Omega := -d\Theta$$

defines a multisymplectic structure on M.

Basic definitions II

Definition

Let (M, ω) be a multisymplectic manifold of order *n*. A *q*-multivector field *U* on *M* ($q \le n$) is called Hamiltonian if

$$\iota \omega = \mathbf{d} \alpha,$$

for certain (n - q)-form α , which will also be called Hamiltonian.

Denote by

$$\Omega_{H}^{a-1}(M)$$

the space of all Hamiltonian forms.

 Top degree Hamiltonian multivector fields (*n*-multivector fields) represent solutions to the variational problem,

$$\iota_U\omega=dH, H\in C^\infty(M).$$

 Hamiltonian vector fields X ∈ 𝔅(M) are symmetries, 𝔅_Xω = 0 and the corresponding (n − 1)−form can be thought of as the Noether current of the symmetry.

Brackets I

The Poisson bracket from Classical Mechanics is:

$$\{f,g\}^{\bullet} = \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} - \frac{\partial g}{\partial q^i} \frac{\partial f}{\partial q^i}$$

which is characterized by the Poisson bivector

$$\Lambda = \frac{\partial}{\partial q^i} \wedge \frac{\partial}{\partial p_i}, \{f,g\}^{\bullet} = \Lambda(df, dg).$$

Definition (Poisson bracket)

A Poisson bracket on M is a Lie algebra structure on $C^{\infty}(M)$, $\{\cdot, \cdot\}^{\bullet}$ that also satisfies Leibniz identity $\{fg, h\}^{\bullet} = f\{g, h\}^{\bullet} + g\{f, h\}^{\bullet}$.

In fact, there is an equivalence

{Poisson brackets} \cong {Bivector fields Λ satisfying $[\Lambda, \Lambda] = 0$ }

We want to find the analogue concepts in multisymplectic field theory:

- 1. Find the concept of brackets in field theory;
- 2. Find the tensorial anallgue to the Poisson bivector;
- 3. Prove these two coincide.

Brackets III

Proposition

Let (M, ω) be a multisymplectic manifold and α , β be Hamiltonian forms, with Hamiltonian multivector fields, X, Y, respectively. Then

$$\{\alpha,\beta\} := (-1)^{k-1-\operatorname{ord}\beta} \iota_Y \iota_X \omega$$

is a Hamiltonian form. Its Hamiltonian multivector field is -[X, Y] (the Schouten-Nijenhuis bracket).

Definition Define the Poisson bracket of two Hamiltonian forms by

$$\{\alpha,\beta\} := (-1)^{(k-1-\operatorname{ord}\beta)} \iota_{Y} \iota_{X} \omega,$$

which is again Hamiltonian by the previous proposition.

Defining a new notion of degree, $\deg\alpha:=k-1-\operatorname{ord}\alpha,$ the bracket satisfies:

• It is graded:

$$\operatorname{deg}\{\alpha,\beta\} = \operatorname{deg}\alpha + \operatorname{deg}\beta;$$

It is graded-skew-symmetric:

$$\{\alpha,\beta\} = -(-1)^{\deg \alpha \deg \beta} \{\beta,\alpha\};$$

• It is local: If $d\alpha|_x = 0$, $\{\alpha, \beta\}|_x = 0$

• It satisfies Leibniz identity: Let $\beta^j \in \Omega_H^{b-1}(M), \gamma_j \in \Omega_H^{c-1}(M)$. If $\beta^j \wedge d\gamma \in \Omega_H^{b+c-1}(M)$, then, for a = k,

$$\{\beta^{j} \wedge d\gamma_{j}, \alpha\} = \{\beta^{j}, \alpha\} \wedge d\gamma_{j} + (-1)^{k - \deg \beta^{j}} d\beta \wedge \{\gamma_{j}, \alpha\};$$

• It is invariant by symmetries: If $X \in \mathfrak{X}(M)$ and $\mathfrak{L}_X \alpha = 0$, then $\iota_X \alpha \in \Omega_H^{a-2}(M)$ and

$$\{\iota_X\alpha,\beta\} = (-1)^{\deg\beta}\iota_X\{\alpha,\beta^j\};$$

It satisfies graded Jacobi identity (up to an exact term):

 $(-1)^{\deg \alpha \deg \gamma} \{ \{ \alpha, \beta \}, \gamma \} + \text{cyclic terms} = \text{exact form.}$

Then we can define:

Definition (Poisson bracket) Let $S^k \subseteq \bigwedge^k M$ be a nondegenerate² subbundle satisfying that $S^a := \{ \alpha = \iota_U \gamma, U \in \bigvee M, \alpha \in S^k \} \subseteq \bigwedge^a M$

defines a subbundle for each *a*. Then, a Poisson bracket is a bilinear operation

$$\Omega_{H}^{a-1}(M)\otimes \Omega_{H}^{b-1}(M) \xrightarrow{\{\cdot,\cdot\}} \Omega^{a+b-(k+1)}(M)$$

k - a

that satisfies the previous list of properties.

²that is, $\iota_v S^k = 0, v \in TM$ implies v = 0

What is the analogue to the Poisson tensor?

In Symplectic Geometry, the Poisson bivector can be thought of as the inverse of the map induced by the contraction

$$TM \to T^*M, v \mapsto \iota_v \omega.$$

Then, the natural analogue would be the "inverse" of

$$TM \to \bigwedge^k M, \ v \mapsto \iota_v \omega.$$

Definition (Almost Poisson tensor) An almost Poisson tensor of order k is am skew-symmetric linear bundle map

$$\sharp: S^k \to TM,$$

where $S^k \subseteq \bigwedge^k M$ is a non-degenerate subbundle.

Brackets VIII

What about integrability?

Definition (Poisson tensor)

We say that an almost Poisson tensor of order k

 $\sharp: S^k \to TM$

is integrable if it satisfies the following property. For α,β taking values in S^k , if we define

$$\theta := \mathcal{L}_{\sharp(\alpha)}\beta - \iota_{\sharp(\beta)}d\alpha,$$

we have $\theta \in S^k$ and

$$\sharp(\theta) = [\sharp(\alpha), \sharp(\beta)].$$

In this case we call $\sharp: S^k \to TM$ a Poisson tensor.

Then we have the following results:

Theorem

A Poisson tensor $\sharp : S^k \to M$ determines a multisymplectic foliation of M, $(\mathcal{F}, \omega_{\mathcal{F}})$.

Theorem

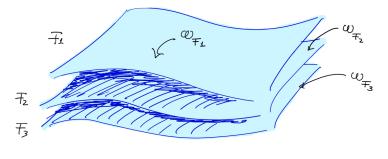
Given a non-degenrate multisymplectic foliation (F, ω_F) , if

$$\dim_x \mathcal{F} - \begin{pmatrix} \dim_x \mathcal{F} \\ k \end{pmatrix}$$

remains constant on *M*, it arises from a (non-necessarily unique) Poisson tensor.

Brackets X

Given a Poisson tensor $\sharp: S^k \to TM$, we have:



$$d\omega_{\mp} = 0$$

41

Furthermore,

Theorem

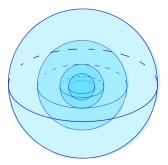
Under certain integrability conditions on the space S^k (which applies, for instance, in the Extended Hamiltonian formalism), we have

{Poisson brackets of order k} \cong {Poisson tensors of order k}

As an academic example, a manifold M foliated by (k + 1)-dimensional manifolds together with volume forms admit a Poisson tensor of order k. And, in particular, have associated the Poisson bracket as an algebraic invariant.

Brackets XII

As an example:



r Sⁿ⁻¹ Rⁿ con le fours de voluien:

Conclusions

Conclusions

- The multisymplectic formalism of Classical Field Theories gives an intrinsic formulation of the variational problem.
- It is completely characterized by a closed (n+1)-form, Ω_L, called the multisymplectic form.
- This motivates an abstract study of manifold together with closed forms (M, ω) .
- Although too general, this study allows for a better understanding of Classical Field Theory (and some geometric byproducts are obtained).
- A recent example can be seen in the generalization of the geometry of Poisson brackets to multisymplectic manifolds, giving the correct notion of both the Poisson bracket and tensor.

Thank you for your attention!