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Poisson and Dirac structures in
Classical Mechanics



Poisson structures

Definition
A Poisson structure on a smooth manifold M is a bracket {·, ·} defined
on C∞(M) that satisfies:

• Skew-symmetry, {f , g} = −{g , f }
• Leibniz identity, {fh, g} = f {h, g} + h{f , g}
• Jacobi identity, {f , {g , h}} + {h, {f , g}} + {g , {h, f }} = 0.

Equivalently, a Poisson structure can be given by

• A bivector field Λ ∈ X2(M) such that [Λ,Λ] = 0.
({f , g} = Λ(df , dg)),

• A skew-symmetric map ♯ : T ∗M → TM satisfying some integrability
conditions,

• A foliation of M by symplectic leaves.
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Going degenerate: Dirac structures

Definition
A Dirac structure on a smooth manifold M is a bracket {·, ·} defined on

C∞(U)K = {f ∈ C∞(U) : X (f ) = 0,∀X ∈ K},

for every U open subset, where K is a smooth integrable distribution on
M (maybe not of constant rank) that satisfies

• Skew-symmetry, {f , g} = −{g , f }
• Leibniz identity, {fh, g} = f {h, g} + h{f , g}
• Jacobi identity, {f , {g , h}} + {h, {f , g}} + {g , {h, f }} = 0.

Equivalently, a Dirac structure can be given by

• An involutive and Lagrangian subbundle L ⊆ TM ⊕M T ∗M.
• A integrable and skew-symmetric map ♯ : S → TM/K , where

S ⊆ T ∗M is a subbundle and K = S◦ is an integrable distribution,
• A foliation of M by pre-symplectic leaves.
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Objective

Translate this picture to classical field theories.
More particularly,
Find an equivalence between brackets and some tensorial object.

Graded Dirac

Graded Poisson

Multisymplectic

Forms ω such that
Im ♭p does not have
constant rank

Dirac

Poisson

Pre-symplectic

Classical mechanics Classical field theories
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Summary of multisymplectic field
theory



The geometric setting

• Fields, denoted by ϕ, are sections of a fibered manifold Y π−→ X .

• A first order variational problem is defined through a Lagrangian
density L on J1πYX (which defines an n-form on X at each point),
with local expression

L = L(xµ, y i , z i
µ)dnx ,

and the action can be expressed as

J [ϕ] =
∫

X
(j1ϕ)∗L.
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Stationary sections

• We define the multisymplectic form as

ΩL := −dΘL,

where
ΘL = ∂L

∂z i
µ

dy i ∧ dn−1xµ −
(

z i
µ

∂L
∂z i
µ

− L
)

dnx

is the Poincaré-Cartan form.

• Stationary fields (solutions to the field equations) are characterized
by

(j1ϕ)∗ιηΩL = 0, for every η ∈ X(J1π).

In coordinates,
d

dxµ

(
∂L
∂z i
µ

)
= ∂L
∂y i .
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Hamiltonian formalism I

• The extended Hamiltonian formalism takes place in
n∧
2

Y = {α ∈
n∧

T ∗Y : ιe1∧e2α = 0, where ei ∈ ker dπ},

π : Y → X . Locally, these forms can be expressed as

α = pdnx + pµi dy i ∧ dn−1xµ.

• Therefore, we have coordinates (xµ, y i , pµi , p) representing the
previous form. We have a canonical multisymplectic structure,

Ω = −dp ∧ dnx − dpµi ∧ dy i ∧ dn−1xµ.

• We can obtain the Poincaré cartan form on J1π as

ΩL = Leg∗
L Ω,

where LegL(xµ, y i , z i
µ) = (xµ, y i , ∂L

∂z i
µ
, L − z i

µ
∂L
∂z i

µ
) is the Legendre

transformation.
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Hamiltonian formalism II

• We also have a reduced Hamiltonian formalism, which takes place in

Z∗ =
n∧
2

Y /
n∧
1

Y ,

where {α ∈
∧n T ∗M : ιeα = 0, e ∈ ker dπ}, locally, α = pdnx . So

we have natural coordinates (x , y i , pµi ).

• Then, we obtain the reduced Legendre transformation
legL := τ ◦ LegL, where

τ :
n∧
2

Y → Z∗

denotes the projection.
• In order to obtain the field theory on Z∗ we need a Hamiltonian

section
h : Z∗ →

n∧
2

Y .
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Equivalence (with regular Lagrangians)

(
∧n

2 Y ,Ω) Extended Hamiltonian

Lagrangian (J1π,ΩL) (Z∗,Ωh) Reduced Hamiltonian

Y

X

τLegL

legL

h

π
j1ϕ ψ

ϕ

ϕ is stationary ⇔ (j1ϕ)∗ιξΩL = 0 ⇔ ψ∗ιξΩh = 0.
In coordinates,

∂ψµi
∂xµ = −∂H

∂y i ,
∂ψi

∂xµ = ∂H
∂pi

µ

.
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Graded Poisson and Dirac
structures



Multisymplectic manifolds

In order to work with any of the formalisms (Lagrangian, extended
Hamiltonian, reduced Hamiltonian), we will work abstractly with a
multisymplectic manifold, (M, ω), a manifold M together with a closed
(n + 1)−form.

We have already a lot of examples:

• (J1π,ΩL), where L is a Lagrangian;
• (

∧n
2 Y ,Ω);

• (Z∗,Ωh), where h : Z∗ →
∧n

2 Y is a Hamiltonian section;
• (M, ω), where M is an orientable manifold and ω is a volume form.
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Hamiltonian multivector fields and Hamiltonian forms

On every multisymplectic manifold, we have the corresponding
generalization of Hamiltonian vector fields:

Definition
A multivector field U ∈ Xq(M) is called Hamiltonian if

ιUΩ = dα,

where α ∈ Ωn−q(M) is called the corresponding Hamiltonian form.

We have the following:

Proposition
If U,V are Hamiltonian multivector fields of degree p, q. Then [U,V ] is
a Hamiltonian multivector field of order p + q − 1. The corresponding
Hamiltonian form is

(−1)qιU∧V Ω.
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Graded Poisson brackets

The previous proposition induces the following:

Definition
Let α, β be Hamiltonian forms of order k − p, k − q, respectively. Define
their Poisson bracket

{α, β} := (−1)qιU∧V Ω,

where U,V are their respective Hamiltonian multivector fields.

Then, we have

Theorem
Modulo exact forms, the previous brackets defines a graded Lie algebra
on the space of Hamiltonian forms

Question: Does this recover the multisymplectic form?
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Properties of graded Poisson brackets

If we set deg β := k − order of β, then th Poisson bracket satisfies:

• It is graded:
deg{α, β} = degα+ deg β;

• It is graded-skew-symmetric:

{α, β} = −(−1)degα deg β{β, α};

• It is local: If dα|x = 0, {α, β}|x = 0
• It satisfies graded Jacobi identity (up to an exact term):

(−1)degα deg γ{{α, β}, γ} + cyclic terms = exact form.

• It satisfies Leibniz identity: For a = k, if β ∧ dγ ∈ Ωb+c−1
H (M), then

{β ∧ dγ, α} = {β, α} ∧ dγ + (−1)k−deg βdβ ∧ {γ, α};

• It is invariant by symmetries: If X ∈ X(M) and £Xα = 0, then
ιXα ∈ Ωa−2

H (M) and

{ιXα, β} = (−1)deg βιX {α, β};
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Onto the definitions...

First, we look at the linearized version:
Definition
Let M be a manifold. A graded Dirac structure of order n is a tuple
(Sa,Kp, ♯a), where Sa ⊆

∧a M is a vector subbundle of forms,
Kp ⊆

∨
p M(=

∧p TM) is a subbundle of multivectors, and

♯a : Sa →
∨

n+1−a
M/Kn+1−a

are linear bundle maps sastifying:

• Kp = (Sa)◦,p, for p ≤ a.
• The maps ♯a are skew-symmetric, that is,

ι♯a(α)β = (−1)(n+1−a)(n+1−b)ι♯b(β)α,

for all α ∈ Sa, β ∈ Sb.
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And it is integrable:

• It is integrable: For α : M → Sa, β : M → Sb sections such that
a + b ≤ 2n + 1, and U,V multivectors of order p = n + 1 − a,
q = n + 1 − b, respectively such that

♯a(α) = U + Kp, ♯b(β) = V + Kq,

we have that the (a + b − k)-form

θ := (−1)(p−1)q£Uβ + (−1)q£Vα− (−1)q

2 d (ιVα+ (−1)pqιUβ)

takes values in Sa+b−k , and

♯a+b−k(θ) = [U,V ] + Kp+q−1.
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Field theories as an example

Let (M, ω) be a multisymplectic manifold of order n, that is, the form ω

must satisfy ιvω = 0 if and only if v = 0. Then, the (linear)
correspondence between Hamiltonian multivector fields and forms defines
a graded Dirac structure of order n:

•
Sa = {ιUω : U ∈

∨
n+1−a

M};

•
Kp = kerp ω;

• ♯a : Sa →
∨

n+1−a /Kn+1−a is given by

♯a(α) = U + Kn+1−a if and only if ιUω = α.

In this case, ♯a are the inverse of the ♭p (contraction) maps induced by ω.
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Relationship with graded Poisson brackets

Given a graded Dirac structure on M, (Sa, ♯a,Kp), we can define a
Hamiltonian form as an (a − 1)−form, α such that dα ∈ Sa.

Definition
The Poisson bracket of Hamiltonian forms is given by

{α, β} := (−1)deg βι♯b(dβ)dα

It satisfies all previous properties and, furthermore,

Theorem
Under some integrability conditions on the sequence of subspaces Sa, any
graded Dirac structure on this family is completely characterized by the
graded Poisson bracket it induces. That is, we get a 1-1 correspondence

{Graded Poisson structures} ∼= {Graded Poisson brackets}.
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But why?

• The quest of finding a bracket formulation of field theories.
• Tools.
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Integrability conditions

What are the integrability conditions on the sequence Sa?

• Locally, there exists Hamiltonian forms γij ∈ Ωb−2
H (U), and functions

f j
i such that

Sb = ⟨df j
i ∧ dγij , i⟩;

• For each 1 ≤ a ≤ k, locally, there exists a family of Hamiltonian
forms forms γj , and a family of vector fields X j such that

Sa = ⟨dγj⟩ £X jγj = 0,

and
Sa−1 = ⟨dιX jγj⟩.
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Idea of the Proof

22



Dynamics: Application to
almost-regular Lagrangians (work
in progress)



Recall:

(
∧n

2 Y ,Ω) Extended Hamiltonian

Lagrangian (J1π,ΩL) (Z∗,Ωh) Reduced Hamiltonian

Y

X

τLegL

legL

h

π
j1ϕ ψ

ϕ

ϕ is stationary ⇔ (j1ϕ)∗ιξΩL = 0 ⇔ ψ∗ιξΩh = 0.

In coordinates,
∂ψµi
∂xµ = −∂H

∂y i ,
∂ψi

∂xµ = ∂H
∂pi

µ

.
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Examples of regular Lagrangians:

• Mechanical Lagrangians from classical mechanics,

L =
(

1
2gij(q, t)q̇i q̇j − V (q, t)

)
dt.

• Klein-Gordon,

L =
(

1
2∂µϕ∂

µϕ− V (ϕ)
) √

−gdnx .
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Examples of singular (and more interesting) Lagrangians:

• Electromagnetism,(
−1

4FµνFµν
+ jµAµ

) √
−gdnx ,

• (Abelian) Chern-Simons,

L = 1
2ϵ
µνσFµνAσd3x .

• BF-theory: Given a principal bundle P → M(4),

L = K [B ∧ F ],

where B is a 2-form taking values in the adjoint bundle, F is the
curvature form of a connection A, and K is an invariant metric.

If we aim to do field theory in the Hamiltonian setting, we
need to incorporate singular Lagrangians.
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Proposed framework:

Recall:

Definition (Almost-regular Lagrangian)
Let π : Y → X be a fibered manifold. A Lagrangian density L on J1π is
said to be almost-regular if its Legendre transformation legL defines a
submersion onto its image.

• Begin with
∧n

2 Y , which is multisymplectic (and non-degenerate).
• Reduce this structure to

∧n
2 Y →

∧n
2 Y /

∧n
1 Y , which inherits a

canonical graded Poisson structure.
• Now take an almost-regular Lagrangian density L on J1π.
• Calculate its image legL(J1π) ⊆

∧n
2 Y /

∧n
1 Y .

• Restrict the graded Poisson structure to a graded Dirac structure on
legL(J1π).
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Dynamics on graded Dirac manifolds I

Definition (Fibered graded Dirac manifold)
Let τ : M → X be a fibered manifold. A fibered graded Dirac structure
on M is a graded Dirac structure on M, ♯n : Sn → TM/K1 such that:

• {semi-basic forms} ⊆ Sn,

• ♯n({semi-basic forms}) = 0.

Define Sn+1 := S1 ∧ Sn, and

Ωn
H(M) := {α ∈ Ωn(M) : dα ∈ Sn+1}.

Theorem
There exists a canonical extension of the graded Poisson bracket defined
for 0 ≤ orderα ≤ n − 1 to

Ωn−1
H (M) ⊗ Ωn

H(M) → Ωn
H(M).
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Dynamics on graded Dirac manifolds II

Definition (Hamiltonian)
A Hamiltonian is a form Θ ∈ Ωn

H(M).

Definition (Solution to HDW equations)
A solution to HDW equation of the dynamics determined by a
Hamiltonian Θ on a fibered graded dirac manifold τ : M → X is a section
ψ : X → M such that

ψ∗(dα) = (dα+ {α,Θ}) ◦ ψ,

for every Hamiltonian form α ∈ Ωn−1
H (M).

Remark
The second term is always semi-basic.
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Example I: Classical Mechanics

Let
Y := Q × R → R =⇒

n∧
2

Y /
n∧
1

Y ∼= T ∗Q × R,

and the "graded" Poisson structure induced by the reduction is the usual
Poisson structure induced by the bivector

Λ = ∂

∂qi ∧ ∂

∂pi
.

The Hamiltonian would then be

Θ = Hdt − pidqi ,

for certain H(qi , pi , t). Then,

{f ,Θ} =
(
∂f
∂qi

∂H
∂pi

− ∂f
∂pi

∂H
∂qi

)
dt − ∂f

∂qi dqi − ∂f
∂pi

dpi

so that the equations read

ψ∗(df ) = df + {f ,Θ} =
(
∂f
∂t + ∂f

∂qi
∂H
∂pi

− ∂f
∂pi

∂H
∂qi

)
dt.
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Example II: Electromagnetism

The Lagrangian L = (− 1
4 FµνFµν + jµAµ)dnx defines the following

constraints:
Fµν + F νµ = 0.

The induced graded Dirac structure (in fact, Poisson) on the constraint
submanifold is the following:

♯n(dFµν ∧ dn−1xν) = − ∂

∂Aµ
,

♯n(dAµ ∧ dn−1xν − dAν ∧ dn−1xµ) = ∂

∂Fµν − ∂

∂F νµ ,

♯n(dnx) = 0.

Then, the Hamiltonian is

Θ =
(

−1
4FµνFµν − jµAµ

)
dnx − FµνdAµ ∧ dn−1xν .
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Example II: Electromagnetism continued

Then, the Poisson brackets are

{F νµdn−1xµ,Θ} = jνdnx − dF νµ ∧ dn−1xµ,

{Aµdn−1xν−Aνdn−1xµ,Θ} = Fνµdnx−
(
dAµ ∧ dn−1xν − dAν ∧ dn−1xµ

)
,

so that equations of motion read

∂F νµ
∂xµ = jν , Fµν = ∂Aµ

∂xν − ∂Aν
∂xµ ,

which are Maxwell’s equations.

Remark
The same would work for any almost-regular Lagrangian, giving a theory
of Poisson brackets, and dynamics in terms of them.

31



Example II: Electromagnetism continued

Then, the Poisson brackets are

{F νµdn−1xµ,Θ} = jνdnx − dF νµ ∧ dn−1xµ,

{Aµdn−1xν−Aνdn−1xµ,Θ} = Fνµdnx−
(
dAµ ∧ dn−1xν − dAν ∧ dn−1xµ

)
,

so that equations of motion read

∂F νµ
∂xµ = jν , Fµν = ∂Aµ

∂xν − ∂Aν
∂xµ ,

which are Maxwell’s equations.

Remark
The same would work for any almost-regular Lagrangian, giving a theory
of Poisson brackets, and dynamics in terms of them.

31



Example II: Electromagnetism continued

Then, the Poisson brackets are

{F νµdn−1xµ,Θ} = jνdnx − dF νµ ∧ dn−1xµ,

{Aµdn−1xν−Aνdn−1xµ,Θ} = Fνµdnx−
(
dAµ ∧ dn−1xν − dAν ∧ dn−1xµ

)
,

so that equations of motion read

∂F νµ
∂xµ = jν , Fµν = ∂Aµ

∂xν − ∂Aν
∂xµ ,

which are Maxwell’s equations.

Remark
The same would work for any almost-regular Lagrangian, giving a theory
of Poisson brackets, and dynamics in terms of them.

31



Final remarks and future research

Why use the induced graded Dirac structure instead of the
multisymplectic one defined by Ωh?

It enlarges the set of Hamiltonian forms, ad thus provides a more
complete theory of brackets.
Thus, it changes the defining object in the geometry:

• Before: Geometry defined by the multisymplectic form Ωh = −dΘh.
• Now: Geometry defined by the induced graded Dirac structure, and

Θh is "demoted" to a dynamical interpretation.

For future research, we are interested (ongoing work) in extending the
brackets presented to allow a description of the evolution of arbitrary
Hamiltonian forms, thus provinding a way of looking for more general
conserved quantities.
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Thank you for your attention!
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Are there non-trivial examples?

• Dirac structures ∼= Pre-symplectic foliations.
• Graded Dirac structures =⇒ Multisymplectic (possibly degenerate)

foliations.
• Multisymplectic foliations (with some technical conditions) =⇒

Graded Dirac structures.
• The correspondences are not inverse of the other!
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