Graded Poisson brackets in classical field theories

Q-Math Seminar

Rubén Izquierdo-López, joint work with M. de León

4 February, 2025

ICMAT-UNIR

Poisson and Dirac structures in Classical Mechanics

Summary of multisymplectic field theory

Graded Poisson and Dirac structures

Dynamics: Application to almost-regular Lagrangians (work in progress)

Poisson and Dirac structures in Classical Mechanics

A Poisson structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on $C^{\infty}(M)$ that satisfies:

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

A Poisson structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on $C^{\infty}(M)$ that satisfies:

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Poisson structure can be given by

 A bivector field Λ ∈ X²(M) such that [Λ, Λ] = 0. ({f,g} = Λ(df, dg)),

A Poisson structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on $C^{\infty}(M)$ that satisfies:

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, \mathit{g}\} = \mathit{f}\{\mathit{h}, \mathit{g}\} + \mathit{h}\{\mathit{f}, \mathit{g}\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Poisson structure can be given by

- A bivector field $\Lambda \in \mathfrak{X}^2(M)$ such that $[\Lambda, \Lambda] = 0$. $(\{f, g\} = \Lambda(df, dg)),$

A Poisson structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on $C^{\infty}(M)$ that satisfies:

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, \mathit{g}\} = \mathit{f}\{\mathit{h}, \mathit{g}\} + \mathit{h}\{\mathit{f}, \mathit{g}\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Poisson structure can be given by

- A bivector field $\Lambda \in \mathfrak{X}^2(M)$ such that $[\Lambda, \Lambda] = 0$. $(\{f, g\} = \Lambda(df, dg)),$
- A foliation of *M* by symplectic leaves.

Definition

A Dirac structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on

$$C^{\infty}(U)_{\mathcal{K}} = \{f \in C^{\infty}(U) : X(f) = 0, \forall X \in \mathcal{K}\},\$$

for every U open subset, where K is a smooth integrable distribution on M (maybe not of constant rank) that satisfies

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Definition

A Dirac structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on

$$C^{\infty}(U)_{\mathcal{K}} = \{f \in C^{\infty}(U) : X(f) = 0, \forall X \in \mathcal{K}\},\$$

for every U open subset, where K is a smooth integrable distribution on ${\cal M}$ (maybe not of constant rank) that satisfies

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, g\} = f\{h, g\} + h\{f, g\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Dirac structure can be given by

• An involutive and Lagrangian subbundle $L \subseteq TM \oplus_M T^*M$.

Definition

A Dirac structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on

$$C^{\infty}(U)_{\mathcal{K}} = \{f \in C^{\infty}(U) : X(f) = 0, \forall X \in \mathcal{K}\},\$$

for every U open subset, where K is a smooth integrable distribution on ${\cal M}$ (maybe not of constant rank) that satisfies

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, \mathit{g}\} = \mathit{f}\{\mathit{h}, \mathit{g}\} + \mathit{h}\{\mathit{f}, \mathit{g}\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Dirac structure can be given by

- An involutive and Lagrangian subbundle $L \subseteq TM \oplus_M T^*M$.

Definition

A Dirac structure on a smooth manifold M is a bracket $\{\cdot, \cdot\}$ defined on

$$C^{\infty}(U)_{\mathcal{K}} = \{f \in C^{\infty}(U) : X(f) = 0, \forall X \in \mathcal{K}\},\$$

for every U open subset, where K is a smooth integrable distribution on ${\cal M}$ (maybe not of constant rank) that satisfies

- Skew-symmetry, $\{f,g\} = -\{g,f\}$
- Leibniz identity, $\{\mathit{fh}, \mathit{g}\} = \mathit{f}\{\mathit{h}, \mathit{g}\} + \mathit{h}\{\mathit{f}, \mathit{g}\}$
- Jacobi identity, $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0.$

Equivalently, a Dirac structure can be given by

- An involutive and Lagrangian subbundle $L \subseteq TM \oplus_M T^*M$.
- A foliation of *M* by pre-symplectic leaves.

Translate this picture to classical field theories.

More particularly,

Find an equivalence between brackets and some tensorial object.

Classical mechanics

Classical field theories

Summary of multisymplectic field theory

• Fields, denoted by ϕ , are sections of a fibered manifold $Y \xrightarrow{\pi} X$.

- Fields, denoted by ϕ , are sections of a fibered manifold $Y \xrightarrow{\pi} X$.
- A first order variational problem is defined through a Lagrangian density \mathcal{L} on $J^1 \pi_{YX}$ (which defines an *n*-form on X at each point), with local expression

$$\mathcal{L} = L(x^{\mu}, y^{i}, z^{i}_{\mu})d^{n}x,$$

and the action can be expressed as

$$\mathcal{J}[\phi] = \int_X (j^1 \phi)^* \mathcal{L}.$$

Stationary sections

• We define the multisymplectic form as

$$\Omega_{\mathcal{L}}:=-d\Theta_{\mathcal{L}},$$

where

$$\Theta_{\mathcal{L}} = rac{\partial L}{\partial z^{i}_{\mu}} dy^{i} \wedge d^{n-1} x_{\mu} - \left(z^{i}_{\mu} rac{\partial L}{\partial z^{i}_{\mu}} - L
ight) d^{n} x$$

is the Poincaré-Cartan form.

Stationary sections

• We define the multisymplectic form as

$$\Omega_{\mathcal{L}}:=-d\Theta_{\mathcal{L}},$$

where

$$\Theta_{\mathcal{L}} = \frac{\partial L}{\partial z_{\mu}^{i}} dy^{i} \wedge d^{n-1} x_{\mu} - \left(z_{\mu}^{i} \frac{\partial L}{\partial z_{\mu}^{i}} - L \right) d^{n} x$$

is the Poincaré-Cartan form.

 Stationary fields (solutions to the field equations) are characterized by

$$(j^1\phi)^*\iota_\eta\Omega_{\mathcal L}=0, \text{ for every } \eta\in\mathfrak{X}(J^1\pi).$$

In coordinates,

$$\frac{\mathrm{d}}{\mathrm{d}x^{\mu}}\left(\frac{\partial L}{\partial z^{i}_{\mu}}\right) = \frac{\partial L}{\partial y^{i}}.$$

Hamiltonian formalism I

• The extended Hamiltonian formalism takes place in

$$\bigwedge_{2}^{n} Y = \{ \alpha \in \bigwedge^{n} T^{*}Y : \iota_{e_{1} \wedge e_{2}} \alpha = 0, \text{ where } e_{i} \in \ker d\pi \},\$$

 $\pi: Y \to X.$ Locally, these forms can be expressed as

$$\alpha = pd^n x + p_i^{\mu} dy^i \wedge d^{n-1} x_{\mu}.$$

Hamiltonian formalism I

The extended Hamiltonian formalism takes place in

$$\bigwedge_{2}^{n} Y = \{ \alpha \in \bigwedge^{n} T^{*}Y : \iota_{e_{1} \wedge e_{2}} \alpha = 0, \text{ where } e_{i} \in \ker d\pi \},$$

 $\pi: Y \to X.$ Locally, these forms can be expressed as

$$\alpha = pd^n x + p_i^{\mu} dy^i \wedge d^{n-1} x_{\mu}.$$

 Therefore, we have coordinates (x^µ, yⁱ, p^µ_i, p) representing the previous form. We have a canonical multisymplectic structure,

$$\Omega = -dp \wedge d^n x - dp_i^\mu \wedge dy^i \wedge d^{n-1} x_\mu.$$

Hamiltonian formalism I

The extended Hamiltonian formalism takes place in

$$\bigwedge_{2}^{n} Y = \{ \alpha \in \bigwedge^{n} T^{*}Y : \iota_{e_{1} \wedge e_{2}} \alpha = 0, \text{ where } e_{i} \in \ker d\pi \},$$

 $\pi: Y \to X.$ Locally, these forms can be expressed as

$$\alpha = pd^n x + p_i^{\mu} dy^i \wedge d^{n-1} x_{\mu}.$$

 Therefore, we have coordinates (x^µ, yⁱ, p^µ_i, p) representing the previous form. We have a canonical multisymplectic structure,

$$\Omega = -dp \wedge d^n x - dp^\mu_i \wedge dy^i \wedge d^{n-1} x_\mu.$$

• We can obtain the Poincaré cartan form on $J^1\pi$ as

$$\Omega_{\mathcal{L}} = \mathsf{Leg}_{\mathcal{L}}^* \, \Omega,$$

where $\text{Leg}_{\mathcal{L}}(x^{\mu}, y^{i}, z^{i}_{\mu}) = (x^{\mu}, y^{i}, \frac{\partial L}{\partial z^{i}_{\mu}}, L - z^{i}_{\mu} \frac{\partial L}{\partial z^{i}_{\mu}})$ is the Legendre transformation.

Hamiltonian formalism II

We also have a reduced Hamiltonian formalism, which takes place in

$$Z^* = \bigwedge_2^n Y / \bigwedge_1^n Y,$$

where $\{\alpha \in \bigwedge^n T^*M : \iota_e \alpha = 0, e \in \ker d\pi\}$, locally, $\alpha = pd^n x$. So we have natural coordinates (x, y^i, p_i^{μ}) .

Hamiltonian formalism II

We also have a reduced Hamiltonian formalism, which takes place in

$$Z^* = \bigwedge_2^n Y / \bigwedge_1^n Y,$$

where $\{\alpha \in \bigwedge^n T^*M : \iota_e \alpha = 0, e \in \ker d\pi\}$, locally, $\alpha = pd^n x$. So we have natural coordinates (x, y^i, p_i^{μ}) .

- Then, we obtain the reduced Legendre transformation $\log_{\mathcal{L}}:=\tau\circ \mathrm{Leg}_{\mathcal{L}}, \, \mathrm{where}$

$$\tau: \bigwedge_2^n Y \to Z^*$$

denotes the projection.

Hamiltonian formalism II

We also have a reduced Hamiltonian formalism, which takes place in

$$Z^* = \bigwedge_2^n Y / \bigwedge_1^n Y,$$

where $\{\alpha \in \bigwedge^n T^*M : \iota_e \alpha = 0, e \in \ker d\pi\}$, locally, $\alpha = pd^n x$. So we have natural coordinates (x, y^i, p_i^{μ}) .

- Then, we obtain the reduced Legendre transformation $\log_{\mathcal{L}}:=\tau\circ \mathrm{Leg}_{\mathcal{L}}, \, \mathrm{where}$

$$\tau: \bigwedge_2^n Y \to Z^*$$

denotes the projection.

In order to obtain the field theory on Z* we need a Hamiltonian section

$$h: Z^* \to \bigwedge_2^n Y.$$

Equivalence (with regular Lagrangians)

Extended Hamiltonian

Reduced Hamiltonian

Equivalence (with regular Lagrangians)

Extended Hamiltonian

Reduced Hamiltonian

$$\phi$$
 is stationary $\Leftrightarrow (j^1 \phi)^* \iota_{\xi} \Omega_{\mathcal{L}} = 0 \Leftrightarrow \psi^* \iota_{\xi} \Omega_h = 0.$

In coordinates,

$$\frac{\partial \psi_i^{\mu}}{\partial x^{\mu}} = -\frac{\partial H}{\partial y^i}, \ \frac{\partial \psi^i}{\partial x^{\mu}} = \frac{\partial H}{\partial p_{\mu}^i}.$$

Graded Poisson and Dirac structures

In order to work with any of the formalisms (Lagrangian, extended Hamiltonian, reduced Hamiltonian), we will work abstractly with a multisymplectic manifold, (M, ω) , a manifold M together with a closed (n + 1)-form.

In order to work with any of the formalisms (Lagrangian, extended Hamiltonian, reduced Hamiltonian), we will work abstractly with a multisymplectic manifold, (M, ω) , a manifold M together with a closed (n+1)-form. We have already a lot of examples:

• $(J^1\pi, \Omega_{\mathcal{L}})$, where \mathcal{L} is a Lagrangian;

- $(\bigwedge_{2}^{n} Y, \Omega);$
- (Z^*, Ω_h) , where $h: Z^* \to \bigwedge_2^n Y$ is a Hamiltonian section;
- (M, ω) , where M is an orientable manifold and ω is a volume form.

On every multisymplectic manifold, we have the corresponding generalization of Hamiltonian vector fields:

On every multisymplectic manifold, we have the corresponding generalization of Hamiltonian vector fields:

Definition

A multivector field $U \in \mathfrak{X}^q(M)$ is called Hamiltonian if

 $\iota_U \Omega = d\alpha,$

where $\alpha \in \Omega^{n-q}(M)$ is called the corresponding Hamiltonian form.

On every multisymplectic manifold, we have the corresponding generalization of Hamiltonian vector fields:

Definition A multivector field $U \in \mathfrak{X}^q(M)$ is called Hamiltonian if

 $\iota_U \Omega = d\alpha,$

where $\alpha \in \Omega^{n-q}(M)$ is called the corresponding Hamiltonian form.

We have the following:

Proposition

If U, V are Hamiltonian multivector fields of degree p, q. Then [U, V] is a Hamiltonian multivector field of order p + q - 1. The corresponding Hamiltonian form is

 $(-1)^q \iota_{U \wedge V} \Omega.$

The previous proposition induces the following:

Definition Let α, β be Hamiltonian forms of order k - p, k - q, respectively. Define their Poisson bracket

$$\{\alpha,\beta\}:=(-1)^q\iota_{U\wedge V}\Omega,$$

where U, V are their respective Hamiltonian multivector fields.

The previous proposition induces the following:

Definition Let α, β be Hamiltonian forms of order k - p, k - q, respectively. Define their Poisson bracket

$$\{\alpha,\beta\}:=(-1)^q\iota_{U\wedge V}\Omega,$$

where U, V are their respective Hamiltonian multivector fields.

Then, we have

Theorem

Modulo exact forms, the previous brackets defines a graded Lie algebra on the space of Hamiltonian forms

Question: Does this recover the multisymplectic form?

Properties of graded Poisson brackets

If we set deg $\beta := k$ – order of β , then th Poisson bracket satisfies:

• It is graded:

$$\mathsf{deg}\{\alpha,\beta\} = \mathsf{deg}\,\alpha + \mathsf{deg}\,\beta;$$

It is graded-skew-symmetric:

$$\{\alpha,\beta\} = -(-1)^{\deg \alpha \deg \beta} \{\beta,\alpha\};$$

- It is local: If $d\alpha|_x = 0$, $\{\alpha, \beta\}|_x = 0$
- It satisfies graded Jacobi identity (up to an exact term):

 $(-1)^{\deg \alpha \deg \gamma} \{ \{ \alpha, \beta \}, \gamma \} + \text{cyclic terms} = \text{exact form.}$

Properties of graded Poisson brackets

If we set deg $\beta := k$ – order of β , then th Poisson bracket satisfies:

• It is graded:

$$\mathsf{deg}\{\alpha,\beta\} = \mathsf{deg}\,\alpha + \mathsf{deg}\,\beta;$$

It is graded-skew-symmetric:

$$\{\alpha,\beta\} = -(-1)^{\deg \alpha \deg \beta} \{\beta,\alpha\};$$

- It is local: If $d\alpha|_x = 0$, $\{\alpha, \beta\}|_x = 0$
- It satisfies graded Jacobi identity (up to an exact term):

 $(-1)^{\deg \alpha \deg \gamma} \{ \{ \alpha, \beta \}, \gamma \} + \text{cyclic terms} = \text{exact form.}$

- It satisfies Leibniz identity: For a = k, if β ∧ dγ ∈ Ω_H^{b+c-1}(M), then
 {β ∧ dγ, α} = {β, α} ∧ dγ + (-1)^{k-deg β}dβ ∧ {γ, α};
- It is invariant by symmetries: If $X \in \mathfrak{X}(M)$ and $\mathfrak{L}_X \alpha = 0$, then $\iota_X \alpha \in \Omega_H^{a-2}(M)$ and

$$\{\iota_X \alpha, \beta\} = (-1)^{\deg \beta} \iota_X \{\alpha, \beta\};$$
¹⁵
Onto the definitions...

First, we look at the linearized version:

Definition

Let *M* be a manifold. A graded Dirac structure of order *n* is a tuple (S^a, K_p, \sharp_a) , where $S^a \subseteq \bigwedge^a M$ is a vector subbundle of forms, $K_p \subseteq \bigvee_p M (= \bigwedge^p TM)$ is a subbundle of multivectors, and

$$\sharp_a:S^a\to\bigvee_{n+1-a}M/K_{n+1-a}$$

are linear bundle maps sastifying:

First, we look at the linearized version:

Definition

Let *M* be a manifold. A graded Dirac structure of order *n* is a tuple (S^a, K_p, \sharp_a) , where $S^a \subseteq \bigwedge^a M$ is a vector subbundle of forms, $K_p \subseteq \bigvee_p M (= \bigwedge^p TM)$ is a subbundle of multivectors, and

$$\sharp_a:S^a\to\bigvee_{n+1-a}M/K_{n+1-a}$$

are linear bundle maps sastifying:

- $K_p = (S^a)^{\circ,p}$, for $p \leq a$.
- The maps *‡*_a are *skew-symmetric*, that is,

$$\iota_{\sharp_a(\alpha)}\beta = (-1)^{(n+1-a)(n+1-b)}\iota_{\sharp_b(\beta)}\alpha,$$

for all $\alpha \in S^a$, $\beta \in S^b$.

And it is integrable:

• It is *integrable*: For $\alpha : M \to S^a$, $\beta : M \to S^b$ sections such that $a + b \le 2n + 1$, and U, V multivectors of order p = n + 1 - a, q = n + 1 - b, respectively such that

$$\sharp_{a}(\alpha) = U + K_{p}, \ \sharp_{b}(\beta) = V + K_{q},$$

we have that the (a + b - k)-form

$$\theta := (-1)^{(p-1)q} \mathcal{E}_U \beta + (-1)^q \mathcal{E}_V \alpha - \frac{(-1)^q}{2} d\left(\iota_V \alpha + (-1)^{pq} \iota_U \beta\right)$$

takes values in S_{a+b-k} , and

$$\sharp_{a+b-k}(\theta) = [U, V] + K_{p+q-1}.$$

Let (M, ω) be a multisymplectic manifold of order n, that is, the form ω must satisfy $\iota_v \omega = 0$ if and only if v = 0. Then, the (linear) correspondence between Hamiltonian multivector fields and forms defines a graded Dirac structure of order n:

Let (M, ω) be a multisymplectic manifold of order n, that is, the form ω must satisfy $\iota_v \omega = 0$ if and only if v = 0. Then, the (linear) correspondence between Hamiltonian multivector fields and forms defines a graded Dirac structure of order n:

$$S^{a} = \{\iota_{U}\omega : U \in \bigvee_{n+1-a} M\};$$

$$K_{p} = \ker_{p} \omega;$$

$$\sharp_{a} : S^{a} \to \bigvee_{n+1-a} / K_{n+1-a} \text{ is given by}$$

$$\sharp_{a}(\alpha) = U + K_{n+1-a} \text{ if and only if } \iota_{U}\omega = \alpha.$$

In this case, \sharp_a are the inverse of the \flat_p (contraction) maps induced by ω .

Relationship with graded Poisson brackets

Given a graded Dirac structure on M, (S^a, \sharp_a, K_p) , we can define a Hamiltonian form as an (a-1)-form, α such that $d\alpha \in S^a$.

Definition

The Poisson bracket of Hamiltonian forms is given by

$$\{\alpha,\beta\} := (-1)^{\deg\beta} \iota_{\sharp_b(d\beta)} d\alpha$$

It satisfies all previous properties and, furthermore,

Relationship with graded Poisson brackets

Given a graded Dirac structure on M, (S^a, \sharp_a, K_p) , we can define a Hamiltonian form as an (a-1)-form, α such that $d\alpha \in S^a$.

Definition The Poisson bracket of Hamiltonian forms is given by

$$\{\alpha,\beta\} := (-1)^{\deg\beta} \iota_{\sharp_b(d\beta)} d\alpha$$

It satisfies all previous properties and, furthermore,

Theorem

Under some integrability conditions on the sequence of subspaces S^a, any graded Dirac structure on this family is completely characterized by the graded Poisson bracket it induces. That is, we get a 1-1 correspondence

 $\{Graded Poisson structures\} \cong \{Graded Poisson brackets\}.$

But why?

• The quest of finding a bracket formulation of field theories.

- The quest of finding a bracket formulation of field theories.
- Tools.

	Symplectic	Poisson	Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	No	Yes	Yes

	Multisymplectic	Graded Poisson	Graded Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	No	Yes	Yes

What are the integrability conditions on the sequence S^a ?

What are the integrability conditions on the sequence S^a ?

• Locally, there exists Hamiltonian forms $\gamma_{ij} \in \Omega^{b-2}_H(U)$, and functions f_i^j such that

$$S^{b} = \langle df_{i}^{j} \wedge d\gamma_{ij}, i \rangle;$$

What are the integrability conditions on the sequence S^a ?

• Locally, there exists Hamiltonian forms $\gamma_{ij} \in \Omega^{b-2}_H(U)$, and functions f_i^j such that

$$S^{b} = \langle df_{i}^{j} \wedge d\gamma_{ij}, i \rangle;$$

 For each 1 ≤ a ≤ k, locally, there exists a family of Hamiltonian forms forms γ^j, and a family of vector fields X^j such that

$$S^a = \langle d\gamma^j \rangle \ \pounds_{X^j} \gamma^j = 0,$$

and

$$S^{a-1} = \langle d\iota_{X^j} \gamma^j \rangle.$$

Dynamics: Application to almost-regular Lagrangians (work in progress) **Recall:**

Extended Hamiltonian

Reduced Hamiltonian

$$\phi$$
 is stationary $\Leftrightarrow (j^1 \phi)^* \iota_{\xi} \Omega_{\mathcal{L}} = 0 \Leftrightarrow \psi^* \iota_{\xi} \Omega_h = 0.$

In coordinates,

$$\frac{\partial \psi_i^{\mu}}{\partial x^{\mu}} = -\frac{\partial H}{\partial y^i}, \ \frac{\partial \psi^i}{\partial x^{\mu}} = \frac{\partial H}{\partial p_{\mu}^i}.$$

Mechanical Lagrangians from classical mechanics,

$$\mathcal{L} = \left(rac{1}{2}g_{ij}(q,t)\dot{q}^i\dot{q}^j - V(q,t)
ight)dt.$$

Mechanical Lagrangians from classical mechanics,

$$\mathcal{L} = \left(rac{1}{2}g_{ij}(q,t)\dot{q}^i\dot{q}^j - V(q,t)
ight)dt.$$

Klein-Gordon,

$$\mathcal{L} = \left(\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi)\right)\sqrt{-g}d^{n}x$$

Electromagnetism,

$$\left(-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+j^{\mu}A_{\mu}\right)\sqrt{-g}d^{n}x,$$

Electromagnetism,

$$\left(-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+j^{\mu}A_{\mu}\right)\sqrt{-g}d^{n}x,$$

• (Abelian) Chern-Simons,

$$\mathcal{L} = rac{1}{2} \epsilon^{\mu
u\sigma} F_{\mu
u} A\sigma d^3 x.$$

Electromagnetism,

$$\left(-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+j^{\mu}A_{\mu}\right)\sqrt{-g}d^{n}x,$$

• (Abelian) Chern-Simons,

$$\mathcal{L} = rac{1}{2} \epsilon^{\mu
u\sigma} F_{\mu
u} A\sigma d^3 x.$$

• BF-theory: Given a principal bundle $\mathbb{P} \to M^{(4)}$,

$$\mathcal{L}=K[B\wedge F],$$

where B is a 2-form taking values in the adjoint bundle, F is the curvature form of a connection A, and K is an invariant metric.

Electromagnetism,

$$\left(-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+j^{\mu}A_{\mu}\right)\sqrt{-g}d^{n}x,$$

• (Abelian) Chern-Simons,

$$\mathcal{L} = rac{1}{2} \epsilon^{\mu
u\sigma} F_{\mu
u} A\sigma d^3 x.$$

• **BF-theory**: Given a principal bundle $\mathbb{P} \to M^{(4)}$,

$$\mathcal{L}=K[B\wedge F],$$

where B is a 2-form taking values in the adjoint bundle, F is the curvature form of a connection A, and K is an invariant metric.

If we aim to do field theory in the Hamiltonian setting, we need to incorporate singular Lagrangians.

Recall:

	Multisymplectic	Graded Poisson	Graded Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	No	Yes	Yes

Recall:

	Multisymplectic	Graded Poisson	Graded Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	No	Yes	Yes

Definition (Almost-regular Lagrangian)

Recall:

	Multisymplectic	Graded Poisson	Graded Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	Νο	Yes	Yes

Definition (Almost-regular Lagrangian)

Let $\pi: Y \to X$ be a fibered manifold. A Lagrangian density \mathcal{L} on $J^1\pi$ is said to be almost-regular if its Legendre transformation $\log_{\mathcal{L}}$ defines a submersion onto its image.

• Begin with $\bigwedge_{2}^{n} Y$, which is multisymplectic (and non-degenerate).

Recall:

	Multisymplectic	Graded Poisson	Graded Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	Νο	Yes	Yes

Definition (Almost-regular Lagrangian)

- Begin with $\bigwedge_{2}^{n} Y$, which is multisymplectic (and non-degenerate).
- Reduce this structure to $\bigwedge_2^n Y \to \bigwedge_2^n Y / \bigwedge_1^n Y$, which inherits a canonical graded Poisson structure.

Recall:

	Multisymplectic	Graded Poisson	Graded Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	Νο	Yes	Yes

Definition (Almost-regular Lagrangian)

- Begin with $\bigwedge_{2}^{n} Y$, which is multisymplectic (and non-degenerate).
- Reduce this structure to $\bigwedge_2^n Y \to \bigwedge_2^n Y / \bigwedge_1^n Y$, which inherits a canonical graded Poisson structure.
- Now take an almost-regular Lagrangian density \mathcal{L} on $J^1\pi$.

Recall:

	Multisymplectic	Graded Poisson	Graded Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	Νο	Yes	Yes

Definition (Almost-regular Lagrangian)

- Begin with $\bigwedge_{2}^{n} Y$, which is multisymplectic (and non-degenerate).
- Reduce this structure to $\bigwedge_2^n Y \to \bigwedge_2^n Y / \bigwedge_1^n Y$, which inherits a canonical graded Poisson structure.
- Now take an almost-regular Lagrangian density \mathcal{L} on $J^1\pi$.
- Calculate its image $\log_{\mathcal{L}}(J^1\pi) \subseteq \bigwedge_2^n Y / \bigwedge_1^n Y$.

Recall:

	Multisymplectic	Graded Poisson	Graded Dirac
Easily restricted?	Yes	No	Yes
Easily Quotiented?	Νο	Yes	Yes

Definition (Almost-regular Lagrangian)

- Begin with $\bigwedge_{2}^{n} Y$, which is multisymplectic (and non-degenerate).
- Reduce this structure to $\bigwedge_2^n Y \to \bigwedge_2^n Y / \bigwedge_1^n Y$, which inherits a canonical graded Poisson structure.
- Now take an almost-regular Lagrangian density \mathcal{L} on $J^1\pi$.
- Calculate its image $\log_{\mathcal{L}}(J^1\pi) \subseteq \bigwedge_2^n Y / \bigwedge_1^n Y$.
- Restrict the graded Poisson structure to a graded Dirac structure on $\log_{\mathcal{L}}(J^1\pi)$.

Dynamics on graded Dirac manifolds I

Definition (Fibered graded Dirac manifold)

Let $\tau : M \to X$ be a fibered manifold. A fibered graded Dirac structure on M is a graded Dirac structure on M, $\sharp_n : S^n \to TM/K_1$ such that:

- {semi-basic forms} $\subseteq S^n$,
- $\sharp_n({\text{semi-basic forms}}) = 0.$

Dynamics on graded Dirac manifolds I

Definition (Fibered graded Dirac manifold)

Let $\tau : M \to X$ be a fibered manifold. A fibered graded Dirac structure on M is a graded Dirac structure on M, $\sharp_n : S^n \to TM/K_1$ such that:

- {semi-basic forms} $\subseteq S^n$,
- $\sharp_n({\text{semi-basic forms}}) = 0.$

Define $S^{n+1} := S^1 \wedge S^n$, and

$$\Omega^n_H(M) := \{ \alpha \in \Omega^n(M) : d\alpha \in S^{n+1} \}.$$

Theorem

There exists a canonical extension of the graded Poisson bracket defined for $0 \leq \operatorname{order} \alpha \leq n-1$ to

$$\Omega^{n-1}_H(M)\otimes \Omega^n_H(M)\to \Omega^n_H(M).$$

Definition (Hamiltonian) A Hamiltonian is a form $\Theta \in \Omega^n_H(M)$.

Definition (Hamiltonian) A Hamiltonian is a form $\Theta \in \Omega^n_H(M)$.

Definition (Solution to HDW equations) A solution to HDW equation of the dynamics determined by a Hamiltonian Θ on a fibered graded dirac manifold $\tau: M \to X$ is a section $\psi: X \to M$ such that

$$\psi^*(\mathbf{d}\alpha) = (\mathbf{d}\alpha + \{\alpha, \Theta\}) \circ \psi,$$

for every Hamiltonian form $\alpha \in \Omega^{n-1}_{\mu}(M)$.

Definition (Hamiltonian) A Hamiltonian is a form $\Theta \in \Omega^n_H(M)$.

Definition (Solution to HDW equations) A solution to HDW equation of the dynamics determined by a Hamiltonian Θ on a fibered graded dirac manifold $\tau: M \to X$ is a section $\psi: X \to M$ such that

$$\psi^*(\mathbf{d}\alpha) = (\mathbf{d}\alpha + \{\alpha, \Theta\}) \circ \psi,$$

for every Hamiltonian form $\alpha \in \Omega^{n-1}_{\mu}(M)$.

Remark The second term is always semi-basic.
Let

$$Y := Q \times \mathbb{R} \to \mathbb{R} \implies \bigwedge_2^n Y / \bigwedge_1^n Y \cong T^*Q \times \mathbb{R},$$

and the "graded" Poisson structure induced by the reduction is the usual Poisson structure induced by the bivector

$$\Lambda = \frac{\partial}{\partial q^i} \wedge \frac{\partial}{\partial p_i}.$$

Let

$$Y := Q \times \mathbb{R} \to \mathbb{R} \implies \bigwedge_2^n Y / \bigwedge_1^n Y \cong T^*Q \times \mathbb{R},$$

and the "graded" Poisson structure induced by the reduction is the usual Poisson structure induced by the bivector

$$\Lambda = \frac{\partial}{\partial q^i} \wedge \frac{\partial}{\partial p_i}.$$

The Hamiltonian would then be

$$\Theta = Hdt - p_i dq^i$$
,

for certain $H(q^i, p_i, t)$.

Let

$$Y := Q \times \mathbb{R} \to \mathbb{R} \implies \bigwedge_2^n Y / \bigwedge_1^n Y \cong T^*Q \times \mathbb{R},$$

and the "graded" Poisson structure induced by the reduction is the usual Poisson structure induced by the bivector

$$\Lambda = \frac{\partial}{\partial q^i} \wedge \frac{\partial}{\partial p_i}.$$

The Hamiltonian would then be

$$\Theta = Hdt - p_i dq^i$$
,

for certain $H(q^i, p_i, t)$. Then,

$$\{f,\Theta\} = \left(\frac{\partial f}{\partial q^{i}}\frac{\partial H}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}}\frac{\partial H}{\partial q^{i}}\right)dt - \frac{\partial f}{\partial q^{i}}dq^{i} - \frac{\partial f}{\partial p_{i}}dp_{i}$$

Let

$$Y := Q \times \mathbb{R} \to \mathbb{R} \implies \bigwedge_2^n Y / \bigwedge_1^n Y \cong T^*Q \times \mathbb{R},$$

and the "graded" Poisson structure induced by the reduction is the usual Poisson structure induced by the bivector

$$\Lambda = \frac{\partial}{\partial q^i} \wedge \frac{\partial}{\partial p_i}.$$

The Hamiltonian would then be

$$\Theta = Hdt - p_i dq^i,$$

for certain $H(q^i, p_i, t)$. Then,

$$\{f,\Theta\} = \left(\frac{\partial f}{\partial q^{i}}\frac{\partial H}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}}\frac{\partial H}{\partial q^{i}}\right)dt - \frac{\partial f}{\partial q^{i}}dq^{i} - \frac{\partial f}{\partial p_{i}}dp_{i}$$

so that the equations read

$$\psi^*(df) = df + \{f, \Theta\} = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial q^i}\frac{\partial H}{\partial p_i} - \frac{\partial f}{\partial p_i}\frac{\partial H}{\partial q^i}\right)dt.$$

Example II: Electromagnetism

The Lagrangian $\mathcal{L} = (-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + j^{\mu}A_{\mu})d^nx$ defines the following constraints:

$$F^{\mu\nu}+F^{\nu\mu}=0.$$

Example II: Electromagnetism

The Lagrangian $\mathcal{L} = (-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + j^{\mu}A_{\mu})d^nx$ defines the following constraints:

$$F^{\mu\nu}+F^{\nu\mu}=0.$$

The induced graded Dirac structure (in fact, Poisson) on the constraint submanifold is the following:

$$\sharp_n(dF^{\mu\nu}\wedge d^{n-1}x_{\nu}) = -rac{\partial}{\partial A_{\mu}},$$
 $\sharp_n(dA_{\mu}\wedge d^{n-1}x_{\nu} - dA_{\nu}\wedge d^{n-1}x_{\mu}) = rac{\partial}{\partial F^{\mu\nu}} - rac{\partial}{\partial F^{\nu\mu}},$
 $\sharp_n(d^nx) = 0.$

Example II: Electromagnetism

The Lagrangian $\mathcal{L} = (-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + j^{\mu}A_{\mu})d^nx$ defines the following constraints:

$$F^{\mu\nu}+F^{\nu\mu}=0.$$

The induced graded Dirac structure (in fact, Poisson) on the constraint submanifold is the following:

0

Then, the Hamiltonian is

$$\Theta = \left(-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - j^{\mu}A_{\mu}\right)d^{n}x - F^{\mu\nu}dA_{\mu} \wedge d^{n-1}x_{\nu}.$$

Then, the Poisson brackets are

$$\{F^{\nu\mu}d^{n-1}x_{\mu},\Theta\} = j^{\nu}d^{n}x - dF^{\nu\mu} \wedge d^{n-1}x_{\mu},$$
$$\{A_{\mu}d^{n-1}x_{\nu} - A_{\nu}d^{n-1}x_{\mu},\Theta\} = F_{\nu\mu}d^{n}x - (dA_{\mu} \wedge d^{n-1}x_{\nu} - dA_{\nu} \wedge d^{n-1}x_{\mu}),$$

Then, the Poisson brackets are

$$\{F^{\nu\mu}d^{n-1}x_{\mu},\Theta\}=j^{\nu}d^{n}x-dF^{\nu\mu}\wedge d^{n-1}x_{\mu},$$

$$\{A_{\mu}d^{n-1}x_{\nu} - A_{\nu}d^{n-1}x_{\mu}, \Theta\} = F_{\nu\mu}d^{n}x - (dA_{\mu} \wedge d^{n-1}x_{\nu} - dA_{\nu} \wedge d^{n-1}x_{\mu}),$$

so that equations of motion read

$$\frac{\partial F^{\nu\mu}}{\partial x^{\mu}} = j^{\nu}, \ F_{\mu\nu} = \frac{\partial A_{\mu}}{\partial x^{\nu}} - \frac{\partial A_{\nu}}{\partial x^{\mu}}$$

which are Maxwell's equations.

Then, the Poisson brackets are

$$\{F^{\nu\mu}d^{n-1}x_{\mu},\Theta\}=j^{\nu}d^{n}x-dF^{\nu\mu}\wedge d^{n-1}x_{\mu},$$

$$\{A_{\mu}d^{n-1}x_{\nu} - A_{\nu}d^{n-1}x_{\mu}, \Theta\} = F_{\nu\mu}d^{n}x - (dA_{\mu} \wedge d^{n-1}x_{\nu} - dA_{\nu} \wedge d^{n-1}x_{\mu}),$$

so that equations of motion read

$$rac{\partial F^{
u\mu}}{\partial x^{\mu}} = j^{
u}, \ F_{\mu
u} = rac{\partial A_{\mu}}{\partial x^{
u}} - rac{\partial A_{
u}}{\partial x^{\mu}},$$

which are Maxwell's equations.

Remark

The same would work for any almost-regular Lagrangian, giving a theory of Poisson brackets, and dynamics in terms of them.

Why use the induced graded Dirac structure instead of the multisymplectic one defined by Ω_h ?

Thus, it changes the defining object in the geometry:

• Before: Geometry defined by the multisymplectic form $\Omega_h = -d\Theta_h$.

Thus, it changes the defining object in the geometry:

- Before: Geometry defined by the multisymplectic form $\Omega_h = -d\Theta_h$.
- Now: Geometry defined by the induced graded Dirac structure, and Θ_h is "demoted" to a dynamical interpretation.

Thus, it changes the defining object in the geometry:

- Before: Geometry defined by the multisymplectic form $\Omega_h = -d\Theta_h$.
- Now: Geometry defined by the induced graded Dirac structure, and Θ_h is "demoted" to a dynamical interpretation.

For future research, we are interested (ongoing work) in extending the brackets presented to allow a description of the evolution of arbitrary Hamiltonian forms, thus provinding a way of looking for more general conserved quantities.

References

- H. Bursztyn, N. Martinez-Alba, and R. Rubio. "On Higher Dirac Structures". In: International Mathematics Research Notices 2019.5 (Mar. 2019), pp. 1503–1542. ISSN: 1073-7928. DOI: 10.1093/imrn/rnx163.
- [2] Manuel de León and Rubén Izquierdo-López. "Graded Poisson and Graded Dirac structures". In: To appear in Journal of Mathematical Physics (2025).
- [3] J. Vankerschaver, H. Yoshimura, and M. Leok. "On the geometry of multi-Dirac structures and Gerstenhaber algebras". en. In: *Journal of Geometry and Physics* 61.8 (Aug. 2011), pp. 1415–1425. ISSN: 03930440. DOI: 10.1016/j.geomphys.2011.03.005.
- [4] M. Zambon. "L_∞-algebras and higher analogues of Dirac sturctures and Courant albegroids". In: Journal of Symplectic Geometry 10.4 (Dec. 2012), pp. 563–599. ISSN: 1527-5256, 1540-2347.

Thank you for your attention!

• Dirac structures \cong Pre-symplectic foliations.

- Dirac structures \cong Pre-symplectic foliations.
- Graded Dirac structures → Multisymplectic (possibly degenerate) foliations.

- Dirac structures \cong Pre-symplectic foliations.
- Graded Dirac structures → Multisymplectic (possibly degenerate) foliations.
- Multisymplectic foliations (with some technical conditions) Graded Dirac structures.

- Dirac structures \cong Pre-symplectic foliations.
- Graded Dirac structures → Multisymplectic (possibly degenerate) foliations.
- Multisymplectic foliations (with some technical conditions) Graded Dirac structures.
- The correspondences are not inverse of the other!

Are there non-trivial examples? Yes!

