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Summary of multisymplectic field
theory



The geometric setting

• Fields, denoted by ϕ, are sections of a fibered manifold Y π−→ X .
• A first order variational problem is defined through a Lagrangian

density L on J1πYX (which defines an n-form on X at each point),
with local expression

L = L(xµ, y i , z i
µ)dnx ,

and the action can be expressed as

J [ϕ] =
∫

X
(j1ϕ)∗L.
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Stationary sections

• We define the multisymplectic form as

ΩL := −dΘL,

where
ΘL = ∂L

∂z i
µ

dy i ∧ dn−1xµ −
(

z i
µ

∂L
∂z i
µ

− L
)

dnx

is the Poincaré-Cartan form.
• Stationary fields (solutions to the field equations) are characterized

by
(j1ϕ)∗ιηΩL = 0, for every η ∈ X(J1π).

In coordinates,
d

dxµ

(
∂L
∂z i
µ

)
= ∂L
∂y i .
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Hamiltonian formalism I

• The extended Hamiltonian formalism takes place in
n∧
2

Y = {α ∈
n∧

T ∗Y : ιe1∧e2α = 0, where ei ∈ ker dπ},

π : Y → X . Locally, these forms can be expressed as

α = pdnx + pµi dy i ∧ dn−1xµ.

• Therefore, we have coordinates (xµ, y i , pµi , p) representing the
previous form. We have a canonical multisymplectic structure,

Ω = −dp ∧ dnx − dpµi ∧ dy i ∧ dn−1xµ.

• We can obtain the Poincaré cartan form on J1π as

ΩL = Leg∗
L Ω,

where LegL(xµ, y i , z i
µ) = (xµ, y i , ∂L

∂z i
µ
, L − z i

µ
∂L
∂z i

µ
) is the Legendre

transformation.
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Hamiltonian formalism II

• We also have a reduced Hamiltonian formalism, which takes place in

Z∗ =
n∧
2

Y /
n∧
1

Y ,

where {α ∈
∧n T ∗M : ιeα = 0, e ∈ ker dπ}, locally, α = pdnx . So

we have natural coordinates (x , y i , pµi ).
• Then, we obtain the reduced Legendre transformation

legL := τ ◦ LegL, where

τ :
n∧
2

Y → Z∗

denotes the projection.
• In order to obtain the field theory on Z∗ we need a Hamiltonian

section

h : Z∗ →
n∧
2

Y .
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Equivalence (with regular Lagrangians)

(
∧n

2 Y ,Ω) Extended Hamiltonian

Lagrangian (J1π,ΩL) (Z∗,Ωh) Reduced Hamiltonian

Y

X

τLegL

legL

h

π
j1ϕ ψ

ϕ

ϕ is stationary ⇔ (j1ϕ)∗ιξΩL = 0 ⇔ ψ∗ιξΩh = 0.

In coordinates,
∂ψµi
∂xµ = −∂H

∂y i ,
∂ψi

∂xµ = ∂H
∂pi

µ

.
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Currents and conserved
quantities



Multisymplectic manifolds

In order to work with any of the formalisms (Lagrangian, extended
Hamiltonian, reduced Hamiltonian), we will work abstractly with a
multisymplectic manifold, (M, ω), a manifold M together with a closed
(n + 1)−form.
We have already a lot of examples:

• (J1π,ΩL), where L is a Lagrangian;
• (

∧n
2 Y ,Ω);

• (Z∗,Ωh), where h : Z∗ →
∧n

2 Y is a Hamiltonian section;
• (M, ω), where M is an orientable manifold and ω is a volume form.

9



Hamiltonian multivector fields and Hamiltonian forms

On every multisymplectic manifold, we have the corresponding
generalization of Hamiltonian vector fields:

Definition
A multivector field U ∈ Xq(M) is called Hamiltonian if

ιUΩ = dα,

where α ∈ Ωn−q(M) is called the corresponding Hamiltonian form.

We have the following:

Proposition
If U,V are Hamiltonian multivector fields of degree p, q. Then [U,V ] is
a Hamiltonian multivector field of order p + q − 1. The corresponding
Hamiltonian form is

(−1)qιU∧V Ω.
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Graded Poisson brackets

The previous proposition induces the following:

Definition
Let α, β be Hamiltonian forms of order k − p, k − q, respectively. Define
their Poisson bracket

{α, β} := (−1)qιU∧V Ω,

where U,V are their respective Hamiltonian multivector fields.

Then, we have

Theorem
Modulo exact forms, the previous brackets defines a graded Lie algebra
on the space of Hamiltonian forms

Question: Does it have more structure?
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Properties of graded Poisson brackets

If we set deg β := k − order of β, then th Poisson bracket satisfies:

• It is graded:
deg{α, β} = degα+ deg β;

• It is graded-skew-symmetric:

{α, β} = −(−1)degα deg β{β, α};

• It is local: If dα|x = 0, {α, β}|x = 0
• It satisfies Leibniz identity: For a = k, if β ∧ dγ ∈ Ωb+c−1

H (M), then

{β ∧ dγ, α} = {β, α} ∧ dγ + (−1)k−deg βdβ ∧ {γ, α};

• It is invariant by symmetries: If X ∈ X(M) and £Xα = 0, then
ιXα ∈ Ωa−2

H (M) and

{ιXα, β} = (−1)deg βιX {α, β};

• It satisfies graded Jacobi identity (up to an exact term):

(−1)degα deg γ{{α, β}, γ} + cyclic terms = exact form.
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Graded Poisson and Dirac
structuress



Concepts so far

Weak higher Dirac

Weak higher Poisson

Multisymplectic

Multi-Dirac

Multisymplectic

Does not include Poisson! It is not graded!
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Our definitions:

Graded Dirac

Graded Poisson

Multisymplectic

Forms ω such that
Im ♭p does not have
constant rank

Includes Poisson and is graded!
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Onto the definitions...

First, we look at the linearized version:

Definition
Let M be a manifold. A graded Poisson structure of order n is a tuple
(Sa,Kp, ♯a), where Sa ⊆

∧a M is a vector subbundle of forms,
Kp ⊆

∨
p M(=

∧p TM) is a subbundle of multivectors, and

♯a : Sa →
∨

n+1−a
M/Kn+1−a

are linear bundle maps sastifying:

• Kp = (Sa)◦,p, for p ≤ a and K1 = 0.
• The maps ♯a are skew-symmetric, that is,

ι♯a(α)β = (−1)(n+1−a)(n+1−b)ι♯b(β)α,

for all α ∈ Sa, β ∈ Sb.
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And it is integrable:

• It is integrable: For α : M → Sa, β : M → Sb sections such that
a + b ≤ 2n + 1, and U,V multivectors of order p = n + 1 − a,
q = n + 1 − b, respectively such that

♯a(α) = U + Kp, ♯b(β) = V + Kq,

we have that the (a + b − k)-form

θ := (−1)(p−1)q£Uβ + (−1)q£Vα− (−1)q

2 d (ιVα+ (−1)pqιUβ)

takes values in Sa+b−k , and

♯a+b−k(θ) = [U,V ] + Kp+q−1.
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Field theories as an example

Let (M, ω) be a non-degenerate multisymplectic manifold of order n, that
is, the form ω must satisfy ιvω = 0 if and only if v = 0. Then, the
(linear) correspondence between Hamiltonian multivector fields and forms
defines a graded Poisson structure of order n:

•
Sa = {ιUω : U ∈

∨
n+1−a

M};

•
Kp = kerp ω;

• ♯a : Sa →
∨

n+1−a /Kn+1−a is given by

♯a(α) = U + Kn+1−a if and only if ιUω = α.

In this case, ♯a are the inverse of the ♭p (contraction) maps induced by ω.
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Relationship with graded Poisson brackets

Given a graded Poisson structure on M, (Sa, ♯a,Kp), we can define a
Hamiltonian form as an (a − 1)−form, α such that dα ∈ Sa.

Definition
The Poisson bracket of Hamiltonian forms is given by

{α, β} := (−1)deg βι♯b(dβ)dα

It satisfies all previous properties and, furthermore,

Theorem
Under some integrability conditions on the sequence of subspaces Sa, any
graded Poisson structure on this family is completely characterized by the
graded Poisson bracket it induces.
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What about Dirac strcutures?

• We should think about graded Dirac structures as a generalization of
both graded Poisson and multisymplectic;

• Non-degeneracy in graded Poisson structures is given by K1 = 0, or
rather,

♯k : Sk → TM.

• In order to obtain graded Dirac, we just allow for non-trivial K1, and
hence we have the "same" definition

♯a : Sa →
∨

n+1−a
M/Kn+1−a;

• Turns our that the non-degeneracy is non-essential.
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Theorem
Defining

{α, β} := (−1)deg βι♯adαdβ,

we get a graded Poisson bracket on the space of Hamiltonian forms
(defined in the same way).

Furthermore:

Theorem
Under the same integrability conditions on Sa, graded Dirac structures
are also characterized by their induced graded Poisson bracket.

Remark
In this sense, these definitions respect the flavour of Poisson and Dirac
geometry, giving a linearized version of brackets. In the first case, a
bracket defined in a non-degenrate space of forms; and allowing for
degeneracy in the second.
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Final remarks and future research

• We developed the theory of Poisson bracket and tensors in classical
field theories;

• What about the geometry (foliations?);
• Analogue to Lie-Poisson?;
• Reduction?
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