Coisotropic reduction in Classical Field Theories

Workshop de Jóvenes Investigadores

Rubén Izquierdo-López, joint work with M. de León

23 September, 2024

ICMAT-UCM

The geometry of calculus of variations

Symplectic Geometry

Multisymplectic Manifolds

Hamiltonian multivector fields and forms

Coisotropic submanifolds

Final remarks and future research

The geometry of calculus of variations

What to minimize/maximize? Sections!

Fixed some fibered manifold

$$Y \xrightarrow{\pi_{YX}} X$$
 with coordinates $(x^{\mu}, y^{i}) \mapsto x^{\mu}$,

we want to find a section

$$\phi: X \to Y, \ (x^{\mu}) \mapsto (x^{\mu}, y^{i} = \phi^{i}(x^{\mu}))$$

minimizing/maximizing the functional

$$\mathcal{J}[\phi] = \int_{X} L\left(x^{\mu}, \phi^{i}(x^{\mu}), \frac{\partial \phi^{i}}{\partial x^{\mu}}, \frac{\partial^{2} \phi^{i}}{\partial x^{\mu} \partial x^{\nu}}, \dots\right) d^{n}x.$$

We will focus on first order theories,

$$\mathcal{J}[\phi] = \int_{X} L\left(x^{\mu}, \phi^{i}(x^{\mu}), \frac{\partial \phi^{i}}{\partial x^{\mu}}\right) d^{n}x.$$

The geometric setting II

We can interpret

$$L\left(x^{\mu},\phi^{i}(x^{\mu}),\frac{\partial\phi^{i}}{\partial x^{\mu}}
ight)d^{n}x$$

as an *n*-form on the first jet bundle

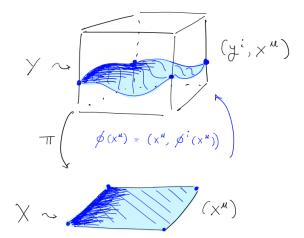
$$J^1 \pi_{YX}$$
 with coordinates $(x^{\mu}, y^i, z^i_{\mu})$.

We call it the Lagrangian density

$$\mathcal{L} = L(z^{\mu}, y^{i}, z^{i}_{\mu})d^{n}x.$$

We can rewrite the action as

$$\mathcal{J}[\phi] = \int_X (j^1 \phi)^* \mathcal{L}.$$



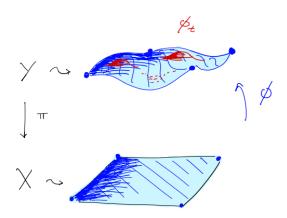
$$\mathcal{J}[\phi] = \int_X (j^1 \phi)^* \mathcal{L}$$

where $\mathcal{L} \in \Omega^n(J^1\pi_{YX})$ is the Lagrangian dentisy.

The Euler-Lagrange equations I

If ϕ is a minimizer/maximizer (more generally, stationary section),

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\mathcal{J}[\phi_t]=0,\,\forall\,\,\mathrm{variation}\,\,\phi_t.$$



Locally, we get

$$\frac{\partial L}{\partial y^i} = \frac{\mathrm{d}}{\mathrm{d}x^{\mu}} \left(\frac{\partial L}{\partial z^i_{\mu}} \right).$$

What about intrinsic Euler-Lagrange equations?

Theorem

There exists an n-form $\Theta_{\mathcal{L}}$, that can be intrinsically defined (using the geometry of $J^1\pi_{YX}$) such that a field $\phi: X \to Y$ is stationary if and only if it satifies

$$(j^1\phi)^*\iota_\eta d\Theta_{\mathcal L}=0, \,\, {\it for \,\, every} \,\, \eta\in\mathfrak X(J^1\pi_{YX}).$$

Locally,

$$\Theta_{\mathcal{L}} = \frac{\partial L}{\partial z_{\mu}^{i}} dy^{i} \wedge d^{n-1} x_{\mu} - \left(\frac{\partial L}{\partial z_{\mu}^{i}} z_{\mu}^{i} - L\right) d^{n} x_{\mu}$$

and it is called the Poincaré-Cartan form.

Symplectic Geometry

Definition (Symplectic manifold)

A symplectic manifold is a pair (M, ω) , where M is an manifold, and $\omega \in \Omega^2(M)$ is a closed, non-degenerate, 2-form.

Definition

For a subspace $i: W \hookrightarrow T_x M$, define the symplectic orthogonal as

$$W^{\perp} := \{ v \in T_q M, \ \omega(v, w) = 0, \forall w \in W \} = \ker i^* \circ \flat.$$

Important submanifolds
$$\begin{cases} Lagrangian, \ T_x L = (T_x L)^{\perp} \\ Coisotropic, \ (T_x N)^{\perp} \subseteq T_x N \end{cases}$$

Dynamics = Lagrangian submanifolds (Weinstein's creed)

$$(M, \omega)$$
 symplectic $\rightarrow (TM, \widetilde{\omega})$ symplectic,
 $\widetilde{\omega} = \flat_{\omega}^* \omega_M; \ \flat_{\omega} : TM \rightarrow T^*M$ (contraction)

Definition

• Hamiltonian vector field: $X_H \in \mathfrak{X}(M)$, $(H \in C^{\infty}(M))$ such that

$$\iota_{X_H}\omega = dH.$$

• Locally Hamiltonian vector field: $X \in \mathfrak{X}(M)$ such that

$$d\iota_X\omega=0.$$

Theorem

A vector field $X : M \to TM$ is locally Hamiltonian if and only if it defines a Lagrangian submanifold of $(TM, \tilde{\omega})$. Given a coisotropic submanifold $i: N \hookrightarrow M$, the distribution

 $x \mapsto (T_x N)^{\perp}$

is regular and involutive. Therefore, it arises from a maximal foliation $\ensuremath{\mathcal{F}}.$ Then,

Theorem

If N/\mathcal{F} admits a smooth manifold structure such that $\pi : N \to N/\mathcal{F}$ defines a submersion (N/\mathcal{F} is a quotient manifold), then there is an unique symplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N=i^*\omega.$$

Furthermore, if L is a Lagrangian submanifold in M that has clean intersection with N, $\pi(L \cap N)$ *is a Lagrangian submanifold in* $(N/\mathcal{F}, \omega_N)$

Poisson brackets

Definition (M, ω) symplectic manifold, $f, g \in C^{\infty}(M)$.

Poisson bracket:
$$\{f,g\} = \omega(X_f, X_g)$$
.

Jacobi indentity

$${f, {g, h}} + \text{cycl.} = 0,$$

Leibniz indentity

$${fg, h} = f{g, h} + g{f, h}$$

Theorem

A submanifold $N \hookrightarrow M$ is coisotropic if and only if

$$I_N = \{f \in C^\infty(M) : df = 0 \text{ on } N\}$$

defines a Poisson subalgebra of $(C^{\infty}, \{\cdot, \cdot\})$.

Multisymplectic Manifolds

Multisymplectic Manifolds

Definition

A multisymplectic manifold of order k is a pair (M, ω) , where M is a smooth manifold, and ω is a closed (k + 1)-form.

No non-degeneracy required

Definition For $W \subseteq T_x M$, and $1 \le j \le k$ define the multisymplectic orthogonal as

$$W^{\perp,j} := \{ v \in T_x M : \iota_{v \wedge w_1 \wedge \cdots w_j} \omega = 0, \forall w_1, \ldots, w_j \in W \}.$$

Important submanifolds
$$\begin{cases} j - \text{Lagrangian}, \ T_x L + \text{ker} \, \flat_1 = (T_x L)^{\perp, j} \\ \\ j - \text{Coisotropic}, \ (T_x N)^{\perp} \subseteq T_x N + \text{ker} \, \flat_1 \end{cases}$$

Hamiltonian multivector fields and forms

The generalization of the concept of Hamiltonian vector field is the following:

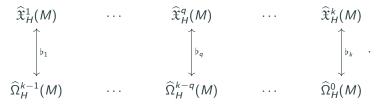
Definition (Hamiltonian multivector field)

Given a multisymplectic manifold of order k, (M, ω) , we say that a multivector field $U \in \mathfrak{X}^q(M)$ is Hamiltonian if

$$\iota_U \omega = \mathbf{d}\alpha,$$

where $\alpha \Omega^{k-q}(M)$. α is called Hamiltonian form.

We have an equivalence:



Dynamics = Lagrangian submanifolds

$$(M,\omega) \text{ multisymplectic} \to \left(\bigvee_{q} M, \widetilde{\Omega}^{q}\right) \text{ multisymplectic}$$
$$\widetilde{\Omega}_{q} = \flat_{q}^{*} \Omega_{M}^{k+1-q}, \ \flat_{q} : \bigvee_{q} M \to \bigwedge^{k+1-q} M \text{ (contraction)}$$

Definition

• Locally Hamiltonian multivector field: $U: M \rightarrow \bigvee_a M$ such that

$$d\iota_U\omega=0.$$

Theorem

A multivector field $U: M \to \bigvee_q M$ is locally Hamiltonian if and only if it defines a (k + 1 - q)-Lagrangian submanifold in $\left(\bigvee_q M, \widetilde{\Omega}^q\right)$

Coisotropic submanifolds

Given a *k*-coisotropic submanifold $i : N \hookrightarrow M$, we have

Proposition The distribution $x \mapsto (T_x N)^{\perp,k} \cap T_x N \subseteq T_x N$ is involutive.

Thus, when it is regular, it arises from a foliation \mathcal{F} .

Theorem

When N/\mathcal{F} admits a smooth manifold structure such that the projection $\pi : N \to N/\mathcal{F}$ defines a submersion (N/\mathcal{F} is a quotient manifold), there exists an unique multisymplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N=i^*\omega.$$

What about projection of Lagrangian submanifolds?

Multisymplectic manifolds of type (k, r)

Definition

Let *L* be a manifold and \mathcal{E} be a regular distribution on *L*. Define:

$$\bigwedge_{r}^{k} L = \{ \alpha \in \bigwedge_{r}^{k} L : \iota_{e_{1} \wedge \dots \wedge e_{r}} \alpha = 0, \forall e_{1}, \dots, e_{r} \in \mathcal{E} \}.$$

$$\left(\bigwedge_{r}^{k} L, \Omega_{L}\right)$$
 is a multisymplectic manifold

Definition

A multisymplectic manifold of type (k, r) $(M, \omega, W, \mathcal{E})$ is a multisymplectic manifold (M, ω) that is locally multisymplectomorphic to $\bigwedge_{r}^{k} L$.

 $W\sim~$ vertical distribution

Let L be a smooth manifold, $i:Q\subseteq L$ be a submanifold, and $\mathcal E$ be a regular distribution. Then,

Proposition $N := \bigwedge_{r}^{k} L|_{O}$ defines a k-coisotropic submanifold.

Theorem For $N = \bigwedge_{r}^{k} L|_{Q}$, where $TQ \cap \mathcal{E}$ has constant rank,

$$N/\mathcal{F}\cong \bigwedge_{r}^{k}Q.$$

[fragile] An important class of Lagrangian submanifold are given by closed forms, since horizontal *k*-Lagrangian submanifolds are locally the image of closed forms.

$$\begin{cases} N = \bigwedge_{r}^{k} L \big|_{Q}, & \underbrace{\text{Coisotropic reduction}}_{\alpha : L \to \bigwedge_{r}^{k} L. & \underbrace{\text{Coisotropic reduction}}_{i^{*} \alpha : Q \to \bigwedge_{r}^{k} Q. \end{cases}$$

Theorem

In our example, k-Lagrangian submanifolds transversal to the vertical distribution reduce to k-Lagrangian submanifolds.

Definition

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r). A submanifold $i : N \hookrightarrow M$ is called vertical if $W|_N \subseteq TN$.

Theorem

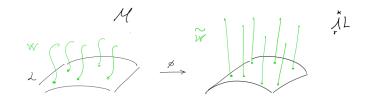
Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r), $i : N \hookrightarrow M$ be a vertical k-coisotropic submanifold, and $j : L \hookrightarrow M$ be a k-Lagrangian submanifold complementary to W. Then there is a neighborhood U of L in M, a submanifold $Q \hookrightarrow L$, a neighborhood V of L in $\bigwedge_{r}^{k} L$, and a multisymplectomorphism

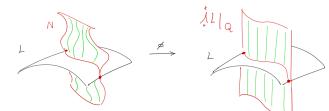
$$\phi: U \to V$$

satisfying

- a) ϕ is the identity on L;
- b) $\phi(N \cap U) = \bigwedge_{r}^{k} L|_{Q} \cap V.$

Idea of the proof





This local characterization allows us to prove:

Theorem

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r), $i : N \hookrightarrow M$ be a vertical k-coisotropic submanifold, and $j : L \hookrightarrow M$ be k-Lagrangian submanifold complementary to W. If $TN/W \cap \mathcal{E}$ has constant rank, so does $(TN)^{\perp,k}$ and we have that, denoting by $\pi : N \to N/\mathcal{F}$ the canonical projection, $\pi(L \cap N)$ is k-Lagrangian in (N, ω_N) .

A general result is not possible, since we can easily find counterexamples.

Definition

Given two Hamiltonian forms $\alpha \in \Omega^{l_1}(M), \beta \in \Omega^{l_2}(M)$ on (M, ω) ,

Poisson bracket:
$$\{\alpha, \beta\} := (-1)^{k-1-l_2} \iota_{X_{\alpha} \wedge X_{\beta}} \omega$$
,

$$\iota_{X_{\alpha}}\omega=d\alpha,\,\iota_{X_{\beta}}\omega=d\beta.$$

- Well-defined (independent of the choice of X_α, X_β),
- Modulo closed-forms, it defines a graded Lie algebra on Hamiltonian forms

$$(-1)^{\deg \widehat{\alpha} \deg \widehat{\gamma}} \{ \widehat{\alpha}, \{ \widehat{\beta}, \widehat{\gamma} \} \} + \operatorname{cycl.} = 0,$$

for

$$\widehat{\alpha} := \alpha + (\mathsf{closed forms}), \ \deg \widehat{\alpha} := k - 1 - \mathsf{order}(\alpha).$$

• Restricts to a Lie bracket on

$$\widehat{\Omega}_{H}^{k-1}(M) := (\mathsf{Hamiltonian}\;(k-1) - \mathsf{forms})/(\mathsf{closed}\;(k-1) - \mathsf{forms})$$

Proposition

A k-coisotropic submanifold i : $N \hookrightarrow M$ defines a Lie subalgebra

$$I_N = \{\widehat{\alpha} \in \widehat{\Omega}_H^{k-1}(M), \ i^* d\alpha = 0\}$$

of the Lie algebra $\widehat{\Omega}_{H}^{k-1}(M)$.

Final remarks and future research

- We gave an interpretation of dynamics as Lagrangian submanifolds.
- We proved a coisotropic reduction theorem in a particular class of multisymplectic manifolds.
- For future research we have proposed the following:
 - Apply the results obtained to Field Theories (regularization, constraint analysis, etc)
 - Extend these results to multicontact geometry for the study of dissipative fields.
 - Connect these ideas to higher analogues of Dirac structures (giving a unified framework for both the Lagrangian and Hamiltonian formulation of Field Theory).
 - Explore the induced geometry by the Poisson brackets (generalization of Poisson tensor?)

References

- Ernst Binz. *Geometry of classical fields.* Ed. by Jędrzej Śniatycki and Hans Fischer. Notas de matemática v. 123. Includes bibliographies and index. Amsterdam ; North-Holland ; 1988. 450 pp. ISBN: 9780080872650.
- [2] M. de León and R. Izquierdo-López. "A review on coisotropic reduction in symplectic, cosymplectic, contact and co-contact Hamiltonian systems". en. In: *Journal of Physics A: Mathematical* and Theoretical 57.16 (Apr. 2024), p. 163001. ISSN: 1751-8121. DOI: 10.1088/1751-8121/ad37b2.
- [3] M. de León and R. Izquierdo-López. Coisotropic reduction in Multisymplectic Geometry. Tech. rep. arXiv:2405.12898 [math] type: article. arXiv, June 2024. DOI: 10.48550/arXiv.2405.12898.