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The geometry of calculus of
variations



The geometric setting |

What to minimize/maximize? Sections!

Fixed some fibered manifold
Y 2% X with coordinates (x*, y') — x*,
we want to find a section
¢ X =Y, (xM) = (XM y = ¢ (x"))

minimizing/maximizing the functional

_ i 9¢'  0%¢' n
714) —/XL(x“,¢(x“),axﬂ,axuaxu,...) d"x.

We will focus on first order theories,
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The geometric setting |l

We can interpret

L <x"’7¢"(x“) W) d"x

T OxH

as an n-form on the first jet bundle
J myx with coordinates (x“7yi,zL).
We call it the Lagrangian density
L= L(z”,y",zl’;)d"x.
We can rewrite the action as

719 = /X (') L.



T19] = /X ('0)" L.

where £ € Q"(Jmyx) is the Lagrangian dentisy.



The Euler-Lagrange equations |

If ¢ is a minimizer/maximizer (more generally, stationary section),
d

dt

Jlo¢] = 0, V variation ¢;.
t=0




The Euler-Lagrange equations ||

Locally, we get
oL d oL
Ay’ dxr \dz, )

What about intrinsic Euler-Lagrange equations?

Theorem

There exists an n-form ©, that can be intrinsically defined (using the
geometry of Jmyx ) such that a field ¢ : X — Y is stationary if and only
if it satifies

('¢)*1,dO, = 0, for every n € X(J 7Tyx).

Locally,

oL . oL .
_ "~ dy’ dnfl o L) g
a0 () o

O,

and it is called the Poincaré-Cartan form.



Symplectic Geometry



Definition (Symplectic manifold)
A symplectic manifold is a pair (M,w), where M is an manifold, and

w € Q2(M) is a closed, non-degenerate, 2-form.

Definition
For a subspace i : W — T, M, define the symplectic orthogonal as

Wt = {ve T,M, w(v,w)=0,Yw € W} = keri* ob.

Lagrangian, T,L = (T.L)*
Important submanifolds

Coisotropic, (T,N)*+ C T,N



Dynamics = Lagrangian submanifolds (Weinstein’s creed)

(M,w) symplectic = (TM, @) symplectic,

W =0 wm; by TM — T*M (contraction)

Definition
= Hamiltonian vector field: Xy € X(M), (H € C>°(M)) such that
Lx,w = dH.
= Locally Hamiltonian vector field: X € X(M) such that
dixw = 0.
Theorem

A vector field X : M — TM is locally Hamiltonian if and only if it defines
a Lagrangian submanifold of (TM, ).



Coisotropic reduction

Given a coisotropic submanifold 7 : N < M, the distribution
X (TXN)L

is regular and involutive. Therefore, it arises from a maximal foliation F.
Then,

Theorem
If N/F admits a smooth manifold structure such that = : N — N/F

defines a submersion (N/F is a quotient manifold), then there is an
unique symplectic form wy on N/F such that

iy = Fw.

Furthermore, if L is a Lagrangian submanifold in M that has clean
intersection with N, w(L N N) is a Lagrangian submanifold in (N/F,wn)
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Poisson brackets

Definition
(M, w) symplectic manifold, f,g € C*>(M).

Poisson bracket: {f, g} = w(Xr, Xg).

= Jacobi indentity
{fa {g7 h}} + CyC'. =0,
= Leibniz indentity

{fg, h} = f{g, h} + g{f, h}.

Theorem
A submanifold N — M is coisotropic if and only if

In={f € C(M):df =0 on N}

defines a Poisson subalgebra of (C*,{-,-}).
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Multisymplectic Manifolds




Multisymplectic Manifolds

Definition
A multisymplectic manifold of order k is a pair (M,w), where M is a

smooth manifold, and w is a closed (k + 1)—form.
No non-degeneracy required
Definition
For W C T, M, and 1 < j < k define the multisymplectic orthogonal as

Wty = {ve TIM: tyrmpnww =0, Ywi,...,w; € W}

j — Lagrangian, T, L+ kerb; = (T, L)/
Important submanifolds

j — Coisotropic, (T,N)* C T, N + ker by
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Hamiltonian multivector fields
and forms




Hamiltonian multivector fields and forms

The generalization of the concept of Hamiltonian vector field is the
following;:

Definition (Hamiltonian multivector field)
Given a multisymplectic manifold of order k, (M, w), we say that a
multivector field U € X9(M) is Hamiltonian if
Lyw = da,
where aQ¥=9(M). «a is called Hamiltonian form.

We have an equivalence:

Xh(M) X}(M) X (M)
b1 bq Dk

QM) QM) QM)
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Dynamics = Lagrangian submanifolds

(M, w) multisymplectic — (\/ /\/I,S~2q> multisymplectic
q

k+1—q
Qq = bZQﬁl*q, bg \/ M — /\ M (contraction)
q
Definition

= Locally Hamiltonian multivector field: U: M —\/ M such that

diyw = 0.

Theorem
A multivector field U : M — \/q M is locally Hamiltonian if and only if it

defines a (k + 1 — q)—Lagrangian submanifold in (\/q M, ﬁ")
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Coisotropic submanifolds




Coisotropic reduction

Given a k-coisotropic submanifold i : N < M, we have

Proposition
The distribution x +— (T,,N)** N T,N C T, N is involutive.

Thus, when it is regular, it arises from a foliation F.

Theorem
When N/F admits a smooth manifold structure such that the projection

m: N — N/F defines a submersion (N/F is a quotient manifold), there
exists an unique multisymplectic form wy on N/F such that

Tty = Fw.

What about projection of Lagrangian submanifolds?
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Multisymplectic manifolds of type (k,r)

Definition
Let L be a manifold and £ be a regular distribution on L. Define:

K K
/\L: {a € /\L: Leghone, e =0,Vey, ... e € E}

k
(/\ L,QL> is a multisymplectic manifold
r

Definition
A multisymplectic manifold of type (k,r) (M,w, W, &) is a
multisymplectic manifold (M, w) that is locally multisymplectomorphic to

AfL.

W ~ vertical distribution
16



An example of coisotropic reduction

Let L be a smooth manifold, /i : @ C L be a submanifold, and £ be a
regular distribution. Then,

Proposition
N := /\’: L|Q defines a k-coisotropic submanifold.

Theorem

For N = A\¥ L| o, where TQ N E has constant rank,

k
N/F= Q.
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Projection of Lagrangian submanifolds (example)

[fragile] An important class of Lagrangian submanifold are given by
closed forms, since horizontal k-Lagrangian submanifolds are locally the
image of closed forms.

N - ) L ’ N f == . )
Ar |Q Coisotropic reduction / ArQ
a:L—>/\fL. i*a:Q—>/\fQ.
Theorem

In our example, k-Lagrangian submanifolds transversal to the vertical
distribution reduce to k-Lagrangian submanifolds.
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Local characterization of vertical coisotropic submanifolds

Definition
Let (M,w, W, &) be a multisymplectic manifold of type (k,r). A

submanifold i : N < M is called vertical if W]y C TN.

Theorem
Let (M,w, W,E) be a multisymplectic manifold of type (k,r),

i: N < M be a vertical k-coisotropic submanifold, and j : L — M be a
k-Lagrangian submanifold complementary to W. Then there is a
neighborhood U of L in M, a submanifold Q — L, a neighborhood V of
Lin /\f L, and a multisymplectomorphism

o:U—V
satisfying

a) ¢ is the identity on L;
k
b) ¢(NN U):/\rL}Qﬂ V.
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Idea of the proof
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Lagrangian submanifold projection

This local characterization allows us to prove:

Theorem

Let (M ,w, W, &) be a multisymplectic manifold of type (k,r), i : N < M
be a vertical k-coisotropic submanifold, and j : L — M be k-Lagrangian
submanifold complementary to W. If TN/W N E has constant rank, so
does (TN)1* and we have that, denoting by = : N — N/JF the canonical
projection, (LN N) is k-Lagrangian in (N,wy).

A general result is not possible, since we can easily find counterexamples.
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Poisson bracket

Definition
Given two Hamiltonian forms a € Q'(M), 8 € Q%(M) on (M,w),

Poisson bracket: {a, 8} := (—l)k_l_lzLxu/\xﬁw,

tx,w = da, 1x;w = df.

= Well-defined (independent of the choice of X, X3),

= Modulo closed-forms, it defines a graded Lie algebra on Hamiltonian
forms

(~1)%E° G, {B,7}} +cyel. = 0,

for

~

@ = a + (closed forms), dega := k — 1 — order(a).
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Poisson bracket

= Restricts to a Lie bracket on
ﬁ’f_,‘l(/\/l) := (Hamiltonian (k — 1) — forms) /(closed (k — 1) — forms)

Proposition
A k-coisotropic submanifold i : N < M defines a Lie subalgebra

Iy = {a e QS Y(M), i*da =0}

of the Lie algebra ﬁ’;,_l(M).
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Final remarks and future research




Final remarks and future research

= We gave an interpretation of dynamics as Lagrangian submanifolds.

= We proved a coisotropic reduction theorem in a particular class of
multisymplectic manifolds.
= For future research we have proposed the following:
= Apply the results obtained to Field Theories (regularization,
constraint analysis, etc)
= Extend these results to multicontact geometry for the study of
dissipative fields.
= Connect these ideas to higher analogues of Dirac structures (giving a
unified framework for both the Lagrangian and Hamiltonian
formulation of Field Theory).
= Explore the induced geometry by the Poisson brackets (generalization
of Poisson tensor?)

24



(1]

2]

(3]

References

Ernst Binz. Geometry of classical fields. Ed. by Jedrzej Sniatycki and
Hans Fischer. Notas de matematica v. 123. Includes bibliographies and
index. Amsterdam ; North-Holland ; 1988. 450 pp. 1sBN: 9780080872650.

M. de Ledén and R. Izquierdo-L6pez. “A review on coisotropic
reduction in symplectic, cosymplectic, contact and co-contact
Hamiltonian systems”. en. In: Journal of Physics A: Mathematical
and Theoretical 57.16 (Apr. 2024), p. 163001. 1sSN: 1751-8121. DOI:
10.1088/1751-8121/ad37b2.

M. de Ledn and R. Izquierdo-Lépez. Coisotropic reduction in
Multisymplectic Geometry. Tech. rep. arXiv:2405.12898 [math] type:
article. arXiv, June 2024. DOI: 10.48550/arXiv.2405.12898.

25


https://doi.org/10.1088/1751-8121/ad37b2
https://doi.org/10.48550/arXiv.2405.12898

	The geometry of calculus of variations
	 Symplectic Geometry
	 Multisymplectic Manifolds
	 Hamiltonian multivector fields and forms
	Coisotropic submanifolds
	Final remarks and future research
	References

