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Symplectic Geometry



Symplectic manifolds

Definition (Symplectic manifold)
A is a pair (M,w), where M is a 2n-dimensional
manifold, and w € Q2(M) is a closed, non-degenerate, 2-form.

Thus, for every symplectic manifold we have an isomorphism induced by
contraction i
TM = T*M; v w.

Definition
For a subspace i : W < T, M, define the as

Wt :={veT M, wv,w)=0,Ywe W} =keri*ob.
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Symplectic orthogonal

Definition
A subspace W C T, M (res. submanifold L) is called

if W C Wt (res. T,L C (T,L)*,Vz € L);
if W =W (res. (T,L): =T,L,Vx € L).
if Wt C Wt (res. (T,L)* C T,L,Vz € L).

A isotropic submanifold is necessarily n-dimensional and we have the
following characterization:

Proposition
An n-dimensional submanifold ¢ : N < M is Lagrangian if and only if
7w = 0.
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Dynamics = Lagrangian submanifolds

Definition

Given a function H € C*°(M) define the
Xy € X(M) as the unique vector field sastifying

Lx,w=dH.
A vector fleld X € X(M) is called if Lyw is closed.
With the isomorphism b : TM — T*M we can define

W = b*wyy.

Theorem

A vector field X : M — T M is locally Hamiltonian if and only if it defines a
Lagrangian submanifold.

Proof. X(M) is Lagrangian if and only if

0=X*"0 = —diyw.
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Coisotropic reduction

Given a coisotropic submanifold ¢ : N < M, the distribution
o (T,N)*

is regular and involutive. Therefore, it arises from a maximal foliation &.

Theorem

If N/& admits a smooth manifold structure such that = : N — N /&

defines a submersion, then there is an unique symplectic form wy on N /&
such that

Trwy = T"w.

Allows for reduction of dynamics!
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Coisotropic reduction

Proof. We omit the first part. For the projection of Lagrangian submanifolds,
let L be a Lagrangian submanifold

It is sufficient to see that 7(L N N) is isotropic and that it has maximal
dimension in N/ . Itis isotropic since [u] € T,(Ly) implies

wy ([ul], [v]) = w(u,v) = 0, for every [v] € T,(Ly). Now, since

kerd,m = (TqN)iw, the kernel-range formula yields

dim Ly = dim(L N N) — dim(T, L N (T,N)*). (1)
Furthermore,

dim(L N N) + dim(7T, L + (T, N)*+) = dim M, (2)
beacause L is Lagrangian and N coisotropic. Substituting (2)in (1) we obtain
dim Ly = dim M — dim(T, L + (T, N)*«) — dim(T, L N (T, N)*~)

=dimM —dim L — dim(TqN)iw =dim M — dim L — (dim M — dim N)
=dimN —dim L =dim N — % dim M,

which is exactly %dim N /&, as a direct calculation shows. O /
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Poisson bracket and Coisotropic submanifolds

Definition
For f,g € C°°(M), their Poisson bracket is defined as

{f,9} = w(Xy, X).

We have the following characterization, which is fundamental for the theory
of constraints.

Proposition

A submanifold i : N — M is coisotropic if and only if, for every pair of
functions, f,g constant on N, {f,g} = 0on N.
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Multisymplectic Manifolds

Definition
A multisymplectic manifold of order & is a pair (M,w), where M is a

smooth manifold, and w is a closed (k + 1)—form.

No non-degeneracy required.
Now we have a collection of maps

by k+1—q
VM= A\ M; U wuw
q
which endow \/q M with a multisymplectic structure
o «k+1—
Qtzlu = quJ g

where Q%179 s the canonical multisymplectic structure on A
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Multisymplectic manifolds

Definition
For W C T, M, and 1 < j < k define the as

Whi={veT,M: ¢ w=0, Ywy,...,w; € W}

VAW AW

Definition
We will say that a subspace W C T, M is

Lif
W C WL’j;

Wi C W + ker bi;
if
Wi =W + kerb,.
These definitions extends in the natural way to submanifolds.
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forms




Hamiltonian multivector fields and forms

Definition
Let (M,w) be a multisymplectic manifold of order k. A multivector field

MMHVM
q

is called if there exists a (k — ¢)-form
k—q
a:M— \ M
such that
tyw = da.

We refer to « as the When (yw is closed, we call U
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Bracket of Hamiltonian forms

We will denote by the quotient of all Hamiltonian forms (2 (M)) by the
space of all closed forms (Z(M))

Qp (M) := Qg (M)/Z(M).

Defining

deg[a] := k — 1 — (order of «),
and

{[ed, [B]}* = —(Q)%5* [iyap ],
where

tpw = dao, tyw = df,

we have
Theorem

For every multisymplectic manifold, (Q (M), {-,-}*) is a graded Lie algebra.

In particular,
Proposition

(QEL(M), {-,-}*) is a Lie algebra.
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Dynamics = Lagrangian submanifolds

Lemma
Let (V,w) be a k-multisymplectic manifold and U, W be k-isotropic and

1-isotropic subspaces respectivley such that
V=UeW.
Then, U is k-Lagrangian and W is 1-Lagrangian.

Theorem ([LI24])
A mutivector field U : M — \/q M is locally Hamiltonian if and only if it
defines a (k + 1 — q)—Lagrangian submanifold.

Proof. Since U (M) defines a (k + 1 — ¢)—isotropic submanifold, it follows
from the decomposition

T\/ =TU(M) @ Whti-q,
q \u(m)

where Wk+1=4 is 1-isotropic.
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Coisotropic submanifolds




Coisotropic submanifolds and brackets

Proposition
Ifi: N < M is a k-coisotropic submanifold, the subspace of (k — 1)-forms
wich are closed on N,

Iy ={[a] € Q%Y (M) : da=0 on N}

defines a subalgebra of the Lie algebra ﬁ’;;l(M).

Proof. Let &, 3 € fN. Then, there are vector fields X, X4 satisfying
tx w=da, Ly w=dp.
Since i*da,i*df = 0, we conclude that X, X take values in
(TN)** C TN + kerb,. Without loss of generality, we can assume that X,
Xg take values in TN. Now, since
{a, B} = (*1)(k71)bxj;ﬁw:i* (LX“AXEW> =0,
concluding that
{&7/)}}' € [N
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Coisotropic reduction

Given a k-coisotropic submanifold i : N < M, we have

Proposition

The distribution  + (T,,N)>* N T,N C T, N is involutive.

Thus, when it is regular, there exists a foliation consisting of maximal leaves
of the distribution, . Then,

Theorem

When N /& admits a smooth manifold structure such that the projection
m: N — N/ defines a submersion, there exists an unique multisymplectic
form wy on N /& such that

T wy = " w.
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Multisymplectic manifolds of type (%, r)

Definition
Let L be a manifold and & be a regular distribution on L. Define:

k k
/\L ={a e /\L P be pepe, @ = 0,Vey, ... e, € E}

Proposition

(/\I: L,Q;) is a non-degenerate multisymplectic manifold, where Q; is (the
restriction of the) canononical multisymplectic form.

These are the type of multisymplectic manifolds that appear in the study of
Classical Field Theories, with r = 2.
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Multisymplectic manifolds of type (%, r)

Definition

A of type (k,r) is a tuple (M,w, W, &), where
(M,w) is a non-degenerate multisymplectic manifold, W is a regular,
integrable, 1-Lagrangian distribution, and & is a subbundle of TM /W
satisfying

a) te pope,w =0, foralle; € TM such thate, + W € &;

b)

k
dim /\ T, M /W, = dim M.

Theorem

A multisymplectic manifold of type (k,r) (M,w, W, &) is locally
: . i

multisymplectomorphic to A\ L.
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An example of coisotropic reduction

Let L be a smooth manifold, 7 : @ C L be a submanifold, and & be a regular
distribution. Then,

Proposition
N = /\': L]Q defines a k-coisotropic submanifold, and for o € N,
(T,N)"* =~ 0 @ ker*,
where
k k
7t /\L — /\ Q

is the restriction. Here, the vertical forms are taken with respect to
& = ENTQ (not necessarily of constant rank).
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An example of coisotropic reduction

When & = €N Q has constant rank, (TN)-F has constant rank and thus, is
an involutive distribution. For z € @, the leaf through (z,0) € N is

kaGﬂAﬁL%Aﬂé)
Therefore,

Theorem

For N=A"L , Where TQ N & has constant rank,
rlQ

k
N/F = \Q.

Furthermore, the multisymplectic structure induced on the quotient is the
natural multisymplectic structure.
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Projection of Lagrangian submanifolds (example)

Define a Lagrangian submanifold through a closed form
k
a: L — /\ L.

Then, the projection to the quotient
m(a(L)NN); m: N = N/F
is the image of
Fa:Q — ;\Q,
which is Lagrangian, because i*« is closed as well.

Theorem

In our example, Lagrangian submanifold transversal to the vertical
distribution reduce to Lagrangian submanifolds.
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Local characterization of vertical coisotropic submanifolds

Definition
Let (M,w, W, &) be a multisymplectic manifold of type (k, 7). A
submanifold i : N < M is called if Wy CTN.

Theorem ([LI24])
Let (M,w, W, &) be a multisymplectic manifold of type (k,r), i : N < M be
a vertical k-coisotropic submanifold, and j : L < M be a k-Lagrangian
submanifold complementary to W. Then there is a neighborhood U of L in
M, a submanifold @ < L, a neighborhood V of L in /\f L,and a
multisymplectomorphism

$: UV
satisfying

a) ¢ is the identity on L;
b) ¢(NNU) :/\’:L|va,
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Idea of the proof

1.

Take
¢: U=V
the multisymplectomorphism of Darboux Theorem, where

k
LCUCM; LcVC AL

2. Define Q := ¢(L N N).
3. Since ¢ preserves the vertical distributions, it also preserves their leaves

and then,

k
qb(UmN):/\L\QmV.
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Lagrangian submanifold projection

This local characterization allows us to prove:

Theorem ([LI24])

Let (M,w, W, &) be a multisymplectic manifold of type (k,r),i: N < M be
a vertical k-coisotropic submanifold, and j : L < M be k-Lagrangian
submanifold complementary to W. If TN /W N & has constant rank, so
does (T'N)** and we have that, denoting by = : N — N/ the canonical
projection,

A general result is not possible, since we can easily find counterexamples.
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A counterexample

Let L = (l4,1,,15) be a 3-dimensional vector space and define

2
Vi=Le& /\L"
Let 1%, 12,13 be the dual basis induced on L* and denote
il =1 A

Then
V = {l},l5,15,a'?, a3 a?3).

Let 11, 12,13, ayq, iy, iy bE the dual basis. We have
Qp=ap, ADALZ + a3 APAE +ags A2 A,

Define
N = (] +1,,l; + 02,1, + a3, 15, al?).
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A counterexample

Then N is a 2-coisotropic subspace. Indeed, a quick calcultion shows
N+2 = 0. This implies that the quotient space N/N*2 is (isomorphic to) N.
Now, taking as the 2-Lagrangian subspace L = (l;,1,,15), we have

LON = (I, + 1y, 1q).

However, this does not define a 2-Lagrangian subspace of (N, Q;|y), since
a2 e (NN L2 butal? ¢ (LNW).
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Final remarks and future research




Final remarks and future research

- We gave an interpretation of dynamics as Lagrangian submanifolds.

- We proved a coisotropic reduction theorem in a particular class of
multisymplectic manifolds.

- For future research we have proposed the following:

- Apply the results obtained to Field Theories (regularization, constraint
analysis, etc)

- Extend these results to multicontact geometry for the study of dissipative
fields.
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Thank you for your attention!

Questions?
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