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Symplectic Geometry



Symplectic manifolds

Definition (Symplectic manifold)
A symplectic manifold is a pair (𝑀, 𝜔), where 𝑀 is a 2𝑛-dimensional
manifold, and 𝜔 ∈ Ω2(𝑀) is a closed, non-degenerate, 2-form.

Thus, for every symplectic manifold we have an isomorphism induced by
contraction

𝑇 𝑀 ♭−→ 𝑇 ∗𝑀; 𝑣 ↦ 𝜄𝑣𝜔.

Definition
For a subspace 𝑖 ∶ 𝑊 ↪ 𝑇𝑥𝑀, define the symplectic orthogonal as

𝑊 ⟂ ∶= {𝑣 ∈ 𝑇𝑞𝑀, 𝜔(𝑣, 𝑤) = 0, ∀𝑤 ∈ 𝑊} = ker 𝑖∗ ∘ ♭.

dim𝑊 ⟂ = 2𝑛 − dim𝑊
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Symplectic orthogonal

Definition
A subspace 𝑊 ⊆ 𝑇𝑥𝑀 (res. submanifold 𝐿) is called

• isotropic if 𝑊 ⊆ 𝑊 ⟂ (res. 𝑇𝑥𝐿 ⊆ (𝑇𝑥𝐿)⟂, ∀𝑥 ∈ 𝐿);
• Lagrangian if 𝑊 = 𝑊 ⟂ (res. (𝑇𝑥𝐿)⟂ = 𝑇𝑥𝐿, ∀𝑥 ∈ 𝐿).
• coisotropic if 𝑊 ⟂ ⊆ 𝑊 ⟂ (res. (𝑇𝑥𝐿)⟂ ⊆ 𝑇𝑥𝐿, ∀𝑥 ∈ 𝐿).

A isotropic submanifold is necessarily 𝑛-dimensional and we have the
following characterization:

Proposition
An 𝑛-dimensional submanifold 𝑖 ∶ 𝑁 ↪ 𝑀 is Lagrangian if and only if
𝑖∗𝜔 = 0.
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Dynamics = Lagrangian submanifolds

Definition
Given a function 𝐻 ∈ 𝐶∞(𝑀) define the Hamiltonian vector field
𝑋𝐻 ∈ 𝔛(𝑀) as the unique vector field sastifying

𝜄𝑋𝐻
𝜔 = 𝑑𝐻.

A vector field 𝑋 ∈ 𝔛(𝑀) is called locally Hamiltonian if 𝜄𝑋𝜔 is closed.

With the isomorphism ♭ ∶ 𝑇 𝑀 → 𝑇 ∗𝑀 we can define

𝜔̃ ∶= ♭∗𝜔𝑀 .

Theorem
A vector field 𝑋 ∶ 𝑀 → 𝑇 𝑀 is locally Hamiltonian if and only if it defines a
Lagrangian submanifold.

Proof. 𝑋(𝑀) is Lagrangian if and only if
0 = 𝑋∗𝜔̃ = −𝑑𝜄𝑋𝜔.
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Coisotropic reduction

Given a coisotropic submanifold 𝑖 ∶ 𝑁 ↪ 𝑀 , the distribution

𝑥 ↦ (𝑇𝑥𝑁)⟂

is regular and involutive. Therefore, it arises from a maximal foliation ℱ.

Theorem
If 𝑁/ℱ admits a smooth manifold structure such that 𝜋 ∶ 𝑁 → 𝑁/ℱ
defines a submersion, then there is an unique symplectic form 𝜔𝑁 on 𝑁/ℱ
such that

𝜋∗𝜔𝑁 = 𝑖∗𝜔.
Furthermore, if 𝐿 is a Lagrangian submanifold in 𝑀 , 𝜋(𝐿 ∩ 𝑁) is a
Lagrangian submanifold in 𝑁/ℱ.

Allows for reduction of dynamics!
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Coisotropic reduction

Proof. We omit the first part. For the projection of Lagrangian submanifolds,
let 𝐿 be a Lagrangian submanifold and denote 𝐿𝑁 ∶= 𝜋(𝐿 ∩ 𝑁).

It is sufficient to see that 𝜋(𝐿 ∩ 𝑁) is isotropic and that it has maximal
dimension in 𝑁/ℱ. It is isotropic since [𝑢] ∈ 𝑇𝑞(𝐿𝑁) implies
𝜔𝑁([𝑢], [𝑣]) = 𝜔(𝑢, 𝑣) = 0, for every [𝑣] ∈ 𝑇𝑞(𝐿𝑁).Now, since
ker 𝑑𝑞𝜋 = (𝑇𝑞𝑁)⟂𝜔 , the kernel-range formula yields

dim𝐿𝑁 = dim(𝐿 ∩ 𝑁) − dim(𝑇𝑞𝐿 ∩ (𝑇𝑞𝑁)⟂𝜔 ). (1)

Furthermore,

dim(𝐿 ∩ 𝑁) + dim(𝑇𝑞𝐿 + (𝑇𝑞𝑁)⟂𝜔 ) = dim𝑀, (2)

because 𝐿 is Lagrangian and 𝑁 coisotropic. Substituting (2)in (1) we obtain

dim𝐿𝑁 = dim𝑀 − dim(𝑇𝑞𝐿 + (𝑇𝑞𝑁)⟂𝜔 ) − dim(𝑇𝑞𝐿 ∩ (𝑇𝑞𝑁)⟂𝜔 )
= dim𝑀 − dim𝐿 − dim(𝑇𝑞𝑁)⟂𝜔 = dim𝑀 − dim𝐿 − (dim𝑀 − dim𝑁)

= dim𝑁 − dim𝐿 = dim𝑁 − 1
2 dim𝑀,

which is exactly 1
2 dim𝑁/ℱ, as a direct calculation shows.
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Poisson bracket and Coisotropic submanifolds

Definition
For 𝑓, 𝑔 ∈ 𝐶∞(𝑀), their Poisson bracket is defined as

{𝑓, 𝑔} ∶= 𝜔(𝑋𝑓 , 𝑋𝑔).

We have the following characterization, which is fundamental for the theory
of constraints.

Proposition
A submanifold 𝑖 ∶ 𝑁 → 𝑀 is coisotropic if and only if, for every pair of
functions, 𝑓, 𝑔 constant on 𝑁 , {𝑓, 𝑔} = 0 on 𝑁 .
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Results to be generalized

1. Endowing 𝑇 𝑀 with the symplectic structure obtained from
♭ ∶ 𝑇 𝑀 → 𝑇 ∗𝑀 , we can interpret dynamics as Lagrangian submanifolds.

2. Coisotropic submanifolds can be reduced to a symplectic manifold.
3. Lagrangian submanifolds project onto Lagrangian submanifolds under
this reduction

4. Coisotropic submanifolds can be characterized by the Poisson bracket.
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Multisymplectic Manifolds



Multisymplectic Manifolds

Definition
A multisymplectic manifold of order 𝑘 is a pair (𝑀, 𝜔), where 𝑀 is a
smooth manifold, and 𝜔 is a closed (𝑘 + 1)−form.

No non-degeneracy required.
Now we have a collection of maps

⋁
𝑞

𝑀
♭𝑞
−→

𝑘+1−𝑞
⋀ 𝑀; 𝑈 ↦ 𝜄𝑈𝜔

which endow ⋁𝑞 𝑀 with a multisymplectic structure

Ω̃𝑞
𝑀 ∶= ♭∗

𝑞Ω𝑘+1−𝑞
𝑀 ,

where Ω𝑘+1−𝑞
𝑀 is the canonical multisymplectic structure on ⋀𝑘+1−𝑞 𝑀 .
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Multisymplectic manifolds

Definition
For 𝑊 ⊆ 𝑇𝑥𝑀, and 1 ≤ 𝑗 ≤ 𝑘 define the multisymplectic orthogonal as

𝑊 ⟂,𝑗 ∶= {𝑣 ∈ 𝑇𝑥𝑀 ∶ 𝜄𝑣∧𝑤1∧⋯𝑤𝑗
𝜔 = 0, ∀𝑤1, … , 𝑤𝑗 ∈ 𝑊}.

Definition
We will say that a subspace 𝑊 ⊆ 𝑇𝑥𝑀 is

• j-isotropic, if
𝑊 ⊆ 𝑊 ⟂,𝑗;

• 𝑗-coisotropic, if
𝑊 ⟂,𝑗 ⊆ 𝑊 + ker ♭1;

• 𝑗-Lagrangian, if
𝑊 ⟂,𝑗 = 𝑊 + ker ♭1.

These definitions extend in the natural way to submanifolds.
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Form bundle

Fix a manifold 𝐿 and define

𝑀 ∶=
𝑘

⋀ 𝐿.
If we define the tautological 𝑘-form

Θ𝐿|𝛼(𝑣1, … , 𝑣𝑘) = 𝛼(𝜋∗𝑣1, … , 𝜋∗𝑣𝑘),

then
Ω𝐿 ∶= 𝑑Θ𝐿

defines a canonical non-degenerate multisymplectic structure on ⋀𝑘 𝐿. In
canonical coordinates (𝑥, 𝑝𝑖1,…,𝑖𝑘

) representing the form

𝛼 = 𝑝𝑖1,…,𝑖𝑘
∧ 𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑘 ,

the canonical multisymplectic form reads

Ω𝐿 = 𝑑𝑝𝑖1,…,𝑖𝑘
∧ 𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑘 .
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An useful lemma

Lemma
Let (𝑉 , 𝜔) be a 𝑘-multisymplectic manifold and 𝑈, 𝑊 be 𝑘-isotropic and
1-isotropic subspaces respectivley such that

𝑉 = 𝑈 ⊕ 𝑊.

Then, 𝑈 is 𝑘-Lagrangian.

Proof. Let 𝑢 + 𝑤 ∈ 𝑈⟂,𝑘, for 𝑢 ∈ 𝑈 , 𝑤 ∈ 𝑊 . Then, for all 𝑢1, … , 𝑢𝑘 ∈ 𝑈 we have

𝜔(𝑢 + 𝑤, 𝑢1, … , 𝑢𝑘) = 𝜔(𝑤, 𝑢1, … , 𝑢𝑘) = 0.
We claim that 𝑤 ∈ ker ♭1. Indeed, given 𝑢𝑖 + 𝑤𝑖 ∈ 𝑉 ,

𝜔(𝑤, 𝑣1, … , 𝑣𝑘) = 𝜔(𝑤, 𝑢1 + 𝑤1, … , 𝑢𝑘 + 𝑤𝑘) = 𝜔(𝑤, 𝑢1, … , 𝑢𝑘) = 0,
where in the last equality we used that 𝑊 is 1-isotropic. Therefore, if
𝑢 + 𝑤 ∈ 𝑈⟂,𝑘, we have

𝑢 + 𝑤 ∈ 𝑈 + ker ♭1,
that is

𝑈⟂,𝑘 ⊆ 𝑈 + ker ♭1,
proving that 𝑈 is 𝑘-coisotropic and, therefore, 𝑘-Lagrangian 14/35
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Proposition
A differential 𝑘-form

𝛼 ∶ 𝐿 →
𝑘

⋀ 𝐿
defines a 𝑘-Lagrangian submanifold if and only if it is closed.

Proof. Since the vertical distribution of 𝐿 → ⋀𝑘 𝐿, 𝑊 , defines a 1-Lagrangian
distribution, and 𝛼(𝐿) is always complementary to 𝑊 , it is enough to show
that 𝛼 is 𝑘-isotropic. We have

𝛼∗Ω𝐿 = 𝑑𝛼,

which ends the proof.
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Hamiltonian multivector fields and
forms



Hamiltonian multivector fields and forms

Definition
Let (𝑀, 𝜔) be a multisymplectic manifold of order 𝑘. A multivector field

𝑈 ∶ 𝑀 → ⋁
𝑞

𝑀

is called Hamiltonian if there exists a (𝑘 − 𝑞)-form

𝛼 ∶ 𝑀 →
𝑘−𝑞
⋀ 𝑀

such that
𝜄𝑈𝜔 = 𝑑𝛼.

We refer to 𝛼 as the Hamiltonian form. When 𝜄𝑈𝜔 is closed, we call 𝑈
locally Hamiltonian.
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Bracket of Hamiltonian forms

We will denote by the quotient of all Hamiltonian forms (Ω𝐻(𝑀)) by the
space of all closed forms (𝑍(𝑀))

Ω̂𝐻(𝑀) ∶= Ω𝐻(𝑀)/𝑍(𝑀).
Defining

deg[𝛼] ∶= 𝑘 − 1 − (order of 𝛼),
and

{[𝛼], [𝛽]}• = −(1)deg𝛼+1[𝜄𝑈∧𝑉 𝜔],
where

𝜄𝑈𝜔 = 𝑑𝛼, 𝜄𝑉 𝜔 = 𝑑𝛽,
we have
Theorem
For every multisymplectic manifold, (Ω̂𝐻(𝑀), {⋅, ⋅}•) is a graded Lie algebra.

In particular,

Proposition
(Ω̂𝑘−1

𝐻 (𝑀), {⋅, ⋅}•) is a Lie algebra.
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Bracket of Hamiltonian forms

Let us restrict our attention to currents ((𝑘 − 1)-forms). Defining (without
quatienting)

{𝛼, 𝛽} = 𝜄𝑈∧𝑉 𝜔,
{⋅, ⋅} does not satisfy the Jacobi identity. Nevertheless,

{𝛼, {𝛽, 𝛾}} + cycl. = 𝑑𝜄𝑈∧𝑉 ∧𝑊 𝜔.

This gives an 𝐿∞−algebra structure on

Ω0(𝑀) 𝑑−→ ⋯ 𝑑−→ Ω𝑘−2(𝑀) 𝑑−→ Ω𝑘−1
𝐻 (𝑀).
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Dynamics = Lagrangian submanifolds

Theorem ([LI24])
A mutivector field 𝑈 ∶ 𝑀 → ⋁𝑞 𝑀 is locally Hamiltonian if and only if it
defines a (𝑘 + 1 − 𝑞)−Lagrangian submanifold.

Proof. Since 𝑈(𝑀) defines a (𝑘 + 1 − 𝑞)−isotropic submanifold, it follows
from the decomposition

𝑇 ⋁
𝑞

𝑀∣
𝑈(𝑀)

= 𝑇 𝑈(𝑀) ⊕ 𝑊 𝑘+1−𝑞,

where 𝑊 𝑘+1−𝑞 is 1-isotropic.
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Coisotropic submanifolds



Coisotropic submanifolds and brackets

Proposition
If 𝑖 ∶ 𝑁 ↪ 𝑀 is a 𝑘-coisotropic submanifold, the subspace of (𝑘 − 1)-forms
wich are closed on 𝑁 ,

𝐼𝑁 = {[𝛼] ∈ Ω𝑘−1
𝐻 (𝑀) ∶ 𝑑𝛼 = 0 on 𝑁}

defines a subalgebra of the Lie algebra Ω̂𝑘−1
𝐻 (𝑀).

Proof. Let ̂𝛼, ̂𝛽 ∈ ̂𝐼𝑁 . Then, there are vector fields 𝑋𝛼, 𝑋𝛽 satisfying

𝜄𝑋𝛼
𝜔 = 𝑑𝛼, 𝜄𝑋𝛽

𝜔 = 𝑑𝛽.
Since 𝑖∗𝑑𝛼, 𝑖∗𝑑𝛽 = 0, we conclude that 𝑋𝛼, 𝑋𝛽 take values in
(𝑇 𝑁)⟂,𝑘 ⊆ 𝑇 𝑁 + ker ♭1. Without loss of generality, we can assume that 𝑋𝛼,
𝑋𝛽 take values in 𝑇 𝑁 . Now, since

{ ̂𝛼, ̂𝛽}• = (−1)(𝑘−1) ̂𝜄𝑋𝛼∧𝑋𝛽
𝜔, 𝑖∗ (𝜄𝑋𝛼∧𝑋𝛽

𝜔) = 0,
concluding that

{ ̂𝛼, ̂𝛽}• ∈ ̂𝐼𝑁 .
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Coisotropic reduction

Given a 𝑘-coisotropic submanifold 𝑖 ∶ 𝑁 ↪ 𝑀, we have

Proposition
The distribution 𝑥 ↦ (𝑇𝑥𝑁)⟂,𝑘 ∩ 𝑇𝑥𝑁 ⊆ 𝑇𝑥𝑁 is involutive.

Thus, when it is regular, there exists a foliation consisting of maximal leaves
of the distribution, ℱ. Then,
Theorem
When 𝑁/ℱ admits a smooth manifold structure such that the projection
𝜋 ∶ 𝑁 → 𝑁/ℱ defines a submersion, there exists an unique multisymplectic
form 𝜔𝑁 on 𝑁/ℱ such that

𝜋∗𝜔𝑁 = 𝑖∗𝜔.

What about projection of Lagrangian submanifolds?
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Multisymplectic manifolds of type (𝑘, 𝑟)

Definition
Let 𝐿 be a manifold and ℰ be a regular distribution on 𝐿. Define:

𝑘
⋀
𝑟

𝐿 = {𝛼 ∈
𝑘

⋀ 𝐿 ∶ 𝜄𝑒1∧⋯∧𝑒𝑟
𝛼 = 0, ∀𝑒1, … , 𝑒𝑟 ∈ ℰ}.

Proposition

(⋀𝑘
𝑟 𝐿, Ω𝐿) is a non-degenerate multisymplectic manifold, where Ω𝐿 is (the

restriction of the) canononical multisymplectic form.

These are the type of multisymplectic manifolds that appear in the study of
Classical Field Theories, with 𝑟 = 2.
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Multisymplectic manifolds of type (𝑘, 𝑟)

Definition
A multisymplectic manifold of type (𝑘, 𝑟) is a tuple (𝑀, 𝜔, 𝑊, ℰ), where
(𝑀, 𝜔) is a non-degenerate multisymplectic manifold, 𝑊 is a regular,
integrable, 1-Lagrangian distribution, and ℰ is a subbundle of 𝑇 𝑀/𝑊
satisfying

a) 𝜄𝑒1∧⋯∧𝑒𝑟
𝜔 = 0, for all 𝑒𝑖 ∈ 𝑇 𝑀 such that 𝑒𝑖 + 𝑊 ∈ ℰ;

b)

dim
𝑘

⋀
𝑟

𝑇𝑞𝑀/𝑊𝑞 = dim𝑀.

Theorem
A multisymplectic manifold of type (𝑘, 𝑟) (𝑀, 𝜔, 𝑊, ℰ) is locally
multisymplectomorphic to ⋀𝑘

𝑟 𝐿.
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An example of coisotropic reduction

Let 𝐿 be a smooth manifold, 𝑖 ∶ 𝑄 ⊆ 𝐿 be a submanifold, and ℰ be a regular
distribution. Then,

Proposition

𝑁 ∶= ⋀𝑘
𝑟 𝐿∣𝑄 defines a 𝑘-coisotropic submanifold, and for 𝛼 ∈ 𝑁 ,

(𝑇𝛼𝑁)⟂,𝑘 ≅ 0 ⊕ ker 𝑖∗,

where

𝑖∗ ∶
𝑘

⋀
𝑟

𝐿 →
𝑘

⋀
𝑟

𝑄

is the restriction. Here, the vertical forms are taken with respect to
̃ℰ = ℰ ∩ 𝑇 𝑄 (not necessarily of constant rank).
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An example of coisotropic reduction

Proof. (𝑟 = 0 for symplicity) To prove the previous equality, we just need to
prove it in the linear case

𝑈 ⊕
𝑘

⋀ 𝐿∗ ⊆ 𝐿 ⊕
𝑘

⋀ 𝐿∗.

Let (𝑣, 𝛼) ∈ (𝑈 ⊕ ⋀𝑘 𝐿∗)⟂,𝑘. Then,

1. 0 = Ω𝐿((𝑣, 𝛼), (0, 𝛽), (𝑢2, 0), … , (𝑢𝑘, 0)) = 𝛽(𝑣, 𝑢2, … , 𝑢𝑘), which implies
𝑣 = 0.

2. 0 = Ω𝐿((𝑣, 𝛼), (𝑢1, 0), … , (𝑢𝑘, 0)) = 𝛼(𝑢1, … , 𝑢𝑘), which implies

𝛼 ∈ ker 𝑖∗.
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An example of coisotropic reduction

When ̃ℰ = ℰ ∩ 𝑄 has constant rank, (𝑇 𝑁)⟂,𝑘 has constant rank and thus, is
an involutive distribution. For 𝑥 ∈ 𝑄, the leaf through (𝑥, 0) ∈ 𝑁 is

ker(𝑖∗ ∶
𝑘

⋀
𝑟

𝑇 ∗
𝑥𝐿 →

𝑘
⋀
𝑟

𝑇 ∗
𝑥𝑄) .

Therefore,

Theorem

For 𝑁 = ⋀𝑘
𝑟 𝐿∣𝑄, where 𝑇 𝑄 ∩ ℰ has constant rank,

𝑁/ℱ ≅
𝑘

⋀
𝑟

𝑄.

Furthermore, the multisymplectic structure induced on the quotient is the
natural multisymplectic structure.
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ker(𝑖∗ ∶
𝑘

⋀
𝑟

𝑇 ∗
𝑥𝐿 →

𝑘
⋀
𝑟

𝑇 ∗
𝑥𝑄) .

Therefore,

Theorem

For 𝑁 = ⋀𝑘
𝑟 𝐿∣𝑄, where 𝑇 𝑄 ∩ ℰ has constant rank,

𝑁/ℱ ≅
𝑘

⋀
𝑟

𝑄.

Furthermore, the multisymplectic structure induced on the quotient is the
natural multisymplectic structure.
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Projection of Lagrangian submanifolds (example)

Define a Lagrangian submanifold through a closed form

𝛼 ∶ 𝐿 →
𝑘

⋀
𝑟

𝐿.

Then, the projection to the quotient

𝜋(𝛼(𝐿) ∩ 𝑁); 𝜋 ∶ 𝑁 → 𝑁/ℱ

is the image of

𝑖∗𝛼 ∶ 𝑄 →
𝑘

⋀
𝑟

𝑄,

which is Lagrangian, because 𝑖∗𝛼 is closed as well.

Theorem
In our example, Lagrangian submanifold transversal to the vertical
distribution reduce to Lagrangian submanifolds.
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Local characterization of vertical coisotropic submanifolds

Definition
Let (𝑀, 𝜔, 𝑊, ℰ) be a multisymplectic manifold of type (𝑘, 𝑟). A
submanifold 𝑖 ∶ 𝑁 ↪ 𝑀 is called vertical if 𝑊|𝑁 ⊆ 𝑇 𝑁.

Theorem ([LI24])
Let (𝑀, 𝜔, 𝑊, ℰ) be a multisymplectic manifold of type (𝑘, 𝑟), 𝑖 ∶ 𝑁 ↪ 𝑀 be
a vertical 𝑘-coisotropic submanifold, and 𝑗 ∶ 𝐿 ↪ 𝑀 be a 𝑘-Lagrangian
submanifold complementary to 𝑊 . Then there is a neighborhood 𝑈 of 𝐿 in
𝑀 , a submanifold 𝑄 ↪ 𝐿, a neighborhood 𝑉 of 𝐿 in ⋀𝑘

𝑟 𝐿, and a
multisymplectomorphism

𝜙 ∶ 𝑈 → 𝑉
satisfying

a) 𝜙 is the identity on 𝐿;
b) 𝜙(𝑁 ∩ 𝑈) = ⋀𝑘

𝑟 𝐿∣𝑄 ∩ 𝑉 .
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Local characterization of Lagrangian submanifolds

Theorem (Normal form of Lagrangian submanifolds [LDS03])
Let (𝑀, 𝜔, 𝑊, ℰ) be a multisymplectic manifold of type (𝑘, 𝑟), 𝑗 ∶ 𝐿 ↪ 𝑀 be
a 𝑘-Lagrangian submanifold complementary to 𝑊 . Then there is a
neighborhood 𝑈 of 𝐿 in 𝑀 , a neighborhood 𝑉 of 𝐿 in ⋀𝑘

𝑟 𝐿, and a
multisymplectomorphism

𝜙 ∶ 𝑈 → 𝑉
satisfying

a) 𝜙 is the identity on 𝐿;
b) 𝜙(𝑈) = 𝑉 .
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Idea of the proof of local form of coisotropic submanifolds

1. Take
𝜙 ∶ 𝑈 → 𝑉

the multisymplectomorphism of the previous local form, where

𝐿 ⊆ 𝑈 ⊆ 𝑀; 𝐿 ⊆ 𝑉 ⊆
𝑘

⋀
𝑟

𝐿.

2. Define 𝑄 ∶= 𝜙(𝐿 ∩ 𝑁).
3. Since 𝜙 preserves the vertical distributions, it also preserves their leaves
and then,

𝜙(𝑈 ∩ 𝑁) =
𝑘

⋀
𝑟

𝐿∣𝑄 ∩ 𝑉 .
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Lagrangian submanifold projection

This local characterization allows us to prove:

Theorem ([LI24])
Let (𝑀, 𝜔, 𝑊, ℰ) be a multisymplectic manifold of type (𝑘, 𝑟), 𝑖 ∶ 𝑁 ↪ 𝑀 be
a vertical 𝑘-coisotropic submanifold, and 𝑗 ∶ 𝐿 ↪ 𝑀 be 𝑘-Lagrangian
submanifold complementary to 𝑊 . If 𝑇 𝑁/𝑊 ∩ ℰ has constant rank, so
does (𝑇 𝑁)⟂,𝑘 and we have that, denoting by 𝜋 ∶ 𝑁 → 𝑁/ℱ the canonical
projection, 𝜋(𝐿 ∩ 𝑁) is Lagrangian in (𝑁, 𝜔𝑁).

A general result is not possible, since we can easily find counterexamples.
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A counterexample

Let 𝐿 = ⟨𝑙1, 𝑙2, 𝑙3⟩ be a 3-dimensional vector space and define

𝑉 ∶= 𝐿 ⊕
2

⋀ 𝐿∗.

Let 𝑙1, 𝑙2, 𝑙3 be the dual basis induced on 𝐿∗ and denote

𝛼𝑖𝑗 ∶= 𝑙𝑖 ∧ 𝑙𝑗.

Then
𝑉 = ⟨𝑙1, 𝑙2, 𝑙3, 𝛼12, 𝛼13, 𝛼23⟩.

Let 𝑙1, 𝑙2, 𝑙3, 𝛼12, 𝛼13, 𝛼23 be the dual basis. We have

Ω𝐿 = 𝛼12 ∧ 𝑙1 ∧ 𝑙2 + 𝛼13 ∧ 𝑙1 ∧ 𝑙3 + 𝛼23 ∧ 𝑙2 ∧ 𝑙3.

Define
𝑁 ∶= ⟨𝑙1 + 𝑙2, 𝑙1 + 𝛼23, 𝑙2 + 𝛼13, 𝑙3, 𝛼12⟩.
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A counterexample

Then 𝑁 is a 2-coisotropic subspace. Indeed, a quick calcultion shows
𝑁⟂,2 = 0. This implies that the quotient space 𝑁/𝑁⟂,2 is (isomorphic to) 𝑁.
Now, taking as the 2-Lagrangian subspace 𝐿 = ⟨𝑙1, 𝑙2, 𝑙3⟩, we have

𝐿 ∩ 𝑁 = ⟨𝑙1 + 𝑙2, 𝑙3⟩.

However, this does not define a 2-Lagrangian subspace of (𝑁, Ω𝐿|𝑁), since
𝛼12 ∈ (𝑁 ∩ 𝐿)⟂,2, but 𝛼12 ∉ (𝐿 ∩ 𝑊).
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Final remarks and future research



Final remarks and future research

• We gave an interpretation of dynamics as Lagrangian submanifolds.
• We proved a coisotropic reduction theorem in a particular class of
multisymplectic manifolds.

• For future research we have proposed the following:
• Apply the results obtained to Field Theories (regularization, constraint
analysis, etc)

• Extend these results to multicontact geometry for the study of dissipative
fields.
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Thank you for your attention!

Questions?
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