Coisotropic reduction in Multisymplectic Geometry

Gamma seminar

Rubén Izquierdo, joint work with Manuel de León. Wednesday 26 June, 2024

ICMAT

- 1. Symplectic Geometry
- 2. Multisymplectic Manifolds
- 3. Hamiltonian multivector fields and forms
- 4. Coisotropic submanifolds
- 5. Final remarks and future research

References

- [CID99] F. Cantrijn, A. Ibort, and M. De León. "On the geometry of multisymplectic manifolds". In: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 66.3 (1999), pp. 303–330. DOI: 10.1017/S1446788700036636.
- [CIL96] F. Cantrijn, A. Ibort, and M. de León. "Hamiltonian structures on multisymplectic manifolds". In: Rend. Sem. Mat. Univ. Politec. Torino 54.3 (Jan. 1996), pp. 225–236.
- [LDS03] M. de Leon, D. Martín de Diego, and A. Santamaria-Merino. "Tulczyjew's triples and lagrangian submanifolds in classical field theories". In: Applied Differential Geometry and Mechanics. 2003, pp. 21–47.
- [L124] Manuel de León and Rubén Izquierdo-López. *Coisotropic reduction in Multisymplectic Geometry.* 2024. arXiv: 2405.12898 [math.SG].

Symplectic Geometry

Definition (Symplectic manifold)

A symplectic manifold is a pair (M, ω) , where M is a 2n-dimensional manifold, and $\omega \in \Omega^2(M)$ is a closed, non-degenerate, 2-form.

Thus, for every symplectic manifold we have an isomorphism induced by contraction

 $TM \xrightarrow{\flat} T^*M; \ v \mapsto \iota_v \omega.$

Definition

For a subspace $i: W \hookrightarrow T_x M$, define the symplectic orthogonal as

$$W^{\perp}:=\{v\in T_{a}M,\ \omega(v,w)=0, \forall w\in W\}=\ker i^{*}\circ\flat.$$

 $\dim W^\perp = 2n - \dim W$

Definition (Symplectic manifold)

A symplectic manifold is a pair (M, ω) , where M is a 2n-dimensional manifold, and $\omega \in \Omega^2(M)$ is a closed, non-degenerate, 2-form.

Thus, for every symplectic manifold we have an isomorphism induced by contraction

 $TM \xrightarrow{\flat} T^*M; \ v \mapsto \iota_v \omega.$

Definition For a subspace $i: W \hookrightarrow T_x M$, define the symplectic orthogonal as

 $W^{\perp}:=\{v\in T_{a}M,\ \omega(v,w)=0, \forall w\in W\}=\ker i^{*}\circ\flat.$

 $\dim W^\perp = 2n - \dim W$

Definition (Symplectic manifold)

A symplectic manifold is a pair (M, ω) , where M is a 2n-dimensional manifold, and $\omega \in \Omega^2(M)$ is a closed, non-degenerate, 2-form.

Thus, for every symplectic manifold we have an isomorphism induced by contraction

 $TM \xrightarrow{\flat} T^*M; \ v \mapsto \iota_v \omega.$

Definition

For a subspace $i: W \hookrightarrow T_x M$, define the symplectic orthogonal as

$$W^{\perp} := \{ v \in T_a M, \ \omega(v, w) = 0, \forall w \in W \} = \ker i^* \circ \flat.$$

 $\dim W^\perp = 2n - \dim W$

Definition

A subspace $W \subseteq T_x M$ (res. submanifold L) is called

- isotropic if $W \subseteq W^{\perp}$ (res. $T_x L \subseteq (T_x L)^{\perp}, \forall x \in L$);
- Lagrangian if $W = W^{\perp}$ (res. $(T_x L)^{\perp} = T_x L, \forall x \in L$).
- coisotropic if $W^{\perp} \subseteq W^{\perp}$ (res. $(T_x L)^{\perp} \subseteq T_x L, \forall x \in L$).

A isotropic submanifold is necessarily *n*-dimensional and we have the following characterization:

Proposition

An n-dimensional submanifold $i:N\hookrightarrow M$ is Lagrangian if and only if $i^*\omega=0.$

Definition

A subspace $W \subseteq T_x M$ (res. submanifold L) is called

- isotropic if $W \subseteq W^{\perp}$ (res. $T_x L \subseteq (T_x L)^{\perp}, \forall x \in L$);
- Lagrangian if $W = W^{\perp}$ (res. $(T_x L)^{\perp} = T_x L, \forall x \in L$).
- coisotropic if $W^{\perp} \subseteq W^{\perp}$ (res. $(T_x L)^{\perp} \subseteq T_x L, \forall x \in L$).

A isotropic submanifold is necessarily *n*-dimensional and we have the following characterization:

Proposition

An n -dimensional submanifold $i:N\hookrightarrow M$ is Lagrangian if and only if $i^*\omega=0.$

Dynamics = Lagrangian submanifolds

Definition

Given a function $H \in C^{\infty}(M)$ define the Hamiltonian vector field $X_H \in \mathfrak{X}(M)$ as the unique vector field sastifying

 $\iota_{X_H}\omega=dH.$

A vector field $X \in \mathfrak{X}(M)$ is called locally Hamiltonian if $\iota_X \omega$ is closed.

With the isomorphism $\flat: TM \to T^*M$ we can define

 $\tilde{\omega} := \flat^* \omega_M.$

Theorem

A vector field $X: M \to TM$ is locally Hamiltonian if and only if it defines a Lagrangian submanifold.

Proof. X(M) is Lagrangian if and only if

$$0 = X^* \tilde{\omega} = -d\iota_X \omega.$$

Dynamics = Lagrangian submanifolds

Definition

Given a function $H \in C^{\infty}(M)$ define the Hamiltonian vector field $X_H \in \mathfrak{X}(M)$ as the unique vector field sastifying

$$\iota_{X_H}\omega = dH.$$

A vector field $X \in \mathfrak{X}(M)$ is called locally Hamiltonian if $\iota_X \omega$ is closed.

With the isomorphism $\flat: TM \to T^*M$ we can define

$$\tilde{\omega}:=\flat^*\omega_M.$$

Theorem

A vector field $X: M \to TM$ is locally Hamiltonian if and only if it defines a Lagrangian submanifold.

Proof. X(M) is Lagrangian if and only if

$$0 = X^* \tilde{\omega} = -d\iota_X \omega.$$

Given a coisotropic submanifold $i: N \hookrightarrow M$, the distribution

 $x\mapsto (T_xN)^\perp$

is regular and involutive. Therefore, it arises from a maximal foliation \mathcal{F} .

Theorem If N/\mathcal{F} admits a smooth manifold structure such that $\pi: N \to N/\mathcal{F}$ defines a submersion, then there is an unique symplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N = i^*\omega.$$

Furthermore, if L is a Lagrangian submanifold in $M, \pi(L \cap N)$ is a Lagrangian submanifold in $N/\mathcal{F}.$

Allows for reduction of dynamics!

Given a coisotropic submanifold $i: N \hookrightarrow M$, the distribution

 $x\mapsto (T_xN)^\perp$

is regular and involutive. Therefore, it arises from a maximal foliation \mathcal{F} .

Theorem

If N/\mathcal{F} admits a smooth manifold structure such that $\pi:N\to N/\mathcal{F}$ defines a submersion, then there is an unique symplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N = i^*\omega.$$

Furthermore, if L is a Lagrangian submanifold in M, $\pi(L \cap N)$ is a Lagrangian submanifold in N/\mathcal{F} .

Allows for reduction of dynamics!

Proof. We omit the first part. For the projection of Lagrangian submanifolds, let L be a Lagrangian submanifold and denote $L_N := \pi(L \cap N)$.

It is sufficient to see that $\pi(L \cap N)$ is isotropic and that it has maximal dimension in N/\mathcal{F} . It is isotropic since $[u] \in T_q(L_N)$ implies $\omega_N([u], [v]) = \omega(u, v) = 0$, for every $[v] \in T_q(L_N)$.Now, since $\ker d_q \pi = (T_q N)^{\perp_\omega}$, the kernel-range formula yields

$$\dim L_N = \dim(L \cap N) - \dim(T_q L \cap (T_q N)^{\perp_{\omega}}). \tag{1}$$

Furthermore

$$\dim(L \cap N) + \dim(T_q L + (T_q N)^{\perp_{\omega}}) = \dim M,$$
(2)

because L is Lagrangian and N coisotropic. Substituting (2)in (1) we obtain $\dim L_N = \dim M - \dim(T_qL + (T_qN)^{\perp_{\omega}}) - \dim(T_qL \cap (T_qN)^{\perp_{\omega}})$ $= \dim M - \dim L - \dim(T_qN)^{\perp_{\omega}} = \dim M - \dim L - (\dim M - \dim N)$ $= \dim N - \dim L = \dim N - \frac{1}{2} \dim M,$ which is exactly $\frac{1}{2} \dim N / T_{\omega}$ as a direct calculation shows

Coisotropic reduction

Proof. We omit the first part. For the projection of Lagrangian submanifolds, let L be a Lagrangian submanifold and denote $L_N := \pi(L \cap N)$.

It is sufficient to see that $\pi(L \cap N)$ is isotropic and that it has maximal dimension in N/\mathcal{F} . It is isotropic since $[u] \in T_q(L_N)$ implies $\omega_N([u], [v]) = \omega(u, v) = 0$, for every $[v] \in T_q(L_N)$. Now, since $\ker d_q \pi = (T_q N)^{\perp_\omega}$, the kernel-range formula yields

$$\dim L_N = \dim(L \cap N) - \dim(T_q L \cap (T_q N)^{\perp_{\omega}}). \tag{1}$$

Furthermore

$$\dim(L \cap N) + \dim(T_q L + (T_q N)^{\perp_{\omega}}) = \dim M,$$
(2)

because L is Lagrangian and N coisotropic. Substituting (2)in (1) we obtain $\dim L_N = \dim M - \dim(T_qL + (T_qN)^{\perp_{\omega}}) - \dim(T_qL \cap (T_qN)^{\perp_{\omega}})$ $= \dim M - \dim L - \dim(T_qN)^{\perp_{\omega}} = \dim M - \dim L - (\dim M - \dim N)$ $= \dim N - \dim L = \dim N - \frac{1}{2} \dim M,$ which is exactly $\frac{1}{2} \dim N / T_{\omega}$ as a direct calculation shows **Proof.** We omit the first part. For the projection of Lagrangian submanifolds, let L be a Lagrangian submanifold and denote $L_N := \pi(L \cap N)$.

It is sufficient to see that $\pi(L \cap N)$ is isotropic and that it has maximal dimension in N/\mathcal{F} . It is isotropic since $[u] \in T_q(L_N)$ implies $\omega_N([u], [v]) = \omega(u, v) = 0$, for every $[v] \in T_q(L_N)$.Now, since $\ker d_q \pi = (T_q N)^{\perp_\omega}$, the kernel-range formula yields

$$\dim L_N = \dim(L \cap N) - \dim(T_q L \cap (T_q N)^{\perp_\omega}). \tag{1}$$

Furthermore,

$$\dim(L\cap N) + \dim(T_qL + (T_qN)^{\perp_\omega}) = \dim M, \tag{2}$$

because L is Lagrangian and N coisotropic. Substituting (2)in (1) we obtain $\dim L_N = \dim M - \dim(T_qL + (T_qN)^{\perp_{\omega}}) - \dim(T_qL \cap (T_qN)^{\perp_{\omega}})$ $= \dim M - \dim L - \dim(T_qN)^{\perp_{\omega}} = \dim M - \dim L - (\dim M - \dim N)$ $= \dim N - \dim L = \dim N - \frac{1}{2} \dim M,$ which is equally 1. If M = M/G as a direct substation shows

which is exactly $\frac{1}{2} \dim N/\mathcal{F}$, as a direct calculation shows.

Definition

For $f,g \in C^{\infty}(M)$, their Poisson bracket is defined as

$$\{f,g\}:=\omega(X_f,X_g).$$

We have the following characterization, which is fundamental for the theory of constraints.

Proposition

A submanifold $i : N \to M$ is coisotropic if and only if, for every pair of functions, f, g constant on N, $\{f, g\} = 0$ on N.

- 1. Endowing TM with the symplectic structure obtained from $b: TM \rightarrow T^*M$, we can interpret dynamics as Lagrangian submanifolds.
- 2. Coisotropic submanifolds can be reduced to a symplectic manifold.
- Lagrangian submanifolds project onto Lagrangian submanifolds under this reduction
- 4. Coisotropic submanifolds can be characterized by the Poisson bracket.

- 1. Endowing TM with the symplectic structure obtained from $b: TM \rightarrow T^*M$, we can interpret dynamics as Lagrangian submanifolds.
- 2. Coisotropic submanifolds can be reduced to a symplectic manifold.
- Lagrangian submanifolds project onto Lagrangian submanifolds under this reduction
- 4. Coisotropic submanifolds can be characterized by the Poisson bracket.

- 1. Endowing TM with the symplectic structure obtained from $b: TM \rightarrow T^*M$, we can interpret dynamics as Lagrangian submanifolds.
- 2. Coisotropic submanifolds can be reduced to a symplectic manifold.
- 3. Lagrangian submanifolds project onto Lagrangian submanifolds under this reduction
- 4. Coisotropic submanifolds can be characterized by the Poisson bracket.

- 1. Endowing TM with the symplectic structure obtained from $b: TM \rightarrow T^*M$, we can interpret dynamics as Lagrangian submanifolds.
- 2. Coisotropic submanifolds can be reduced to a symplectic manifold.
- 3. Lagrangian submanifolds project onto Lagrangian submanifolds under this reduction
- 4. Coisotropic submanifolds can be characterized by the Poisson bracket.

Multisymplectic Manifolds

Definition

A multisymplectic manifold of order k is a pair (M, ω) , where M is a smooth manifold, and ω is a closed (k + 1)-form.

No non-degeneracy required.

Now we have a collection of maps

$$\bigvee_{q} M \xrightarrow{\flat_{q}} \bigwedge^{k+1-q} M; \ U \mapsto \iota_{U} \omega$$

which endow $\bigvee_{a} M$ with a multisymplectic structure

$$\widetilde{\Omega}^q_M := \flat_q^* \Omega^{k+1-q}_M,$$

where Ω_M^{k+1-q} is the canonical multisymplectic structure on $\bigwedge^{k+1-q} M$.

Definition

A multisymplectic manifold of order k is a pair (M, ω) , where M is a smooth manifold, and ω is a closed (k + 1)-form.

No non-degeneracy required.

Now we have a collection of maps

$$\bigvee_{q} M \xrightarrow{\flat_{q}} \bigwedge^{k+1-q} M; \ U \mapsto \iota_{U} \omega$$

which endow $\bigvee_{a} M$ with a multisymplectic structure

$$\widetilde{\Omega}^q_M:=\flat_q^*\Omega^{k+1-q}_M,$$

where Ω_M^{k+1-q} is the canonical multisymplectic structure on $\bigwedge^{k+1-q} M$.

Multisymplectic manifolds

Definition

For $W \subseteq T_x M$, and $1 \le j \le k$ define the multisymplectic orthogonal as

$$W^{\perp,j}:=\{v\in T_xM:\ \iota_{v\wedge w_1\wedge\cdots w_j}\omega=0,\ \forall w_1,\ldots,w_j\in W\}.$$

Definition

We will say that a subspace $W \subseteq T_x M$ is

• j-isotropic, if

 $W \subseteq W^{\perp,j};$

• *j*-coisotropic, if

 $W^{\perp,j} \subseteq W + \ker \mathfrak{b}_1;$

 \cdot *j*-Lagrangian, if

 $W^{\perp,j} = W + \ker \flat_1.$

These definitions extend in the natural way to submanifolds.

Multisymplectic manifolds

Definition

For $W \subseteq T_x M$, and $1 \le j \le k$ define the multisymplectic orthogonal as

$$W^{\perp,j}:=\{v\in T_xM:\ \iota_{v\wedge w_1\wedge\cdots w_j}\omega=0,\ \forall w_1,\ldots,w_j\in W\}.$$

Definition

We will say that a subspace $W \subseteq T_x M$ is

• j-isotropic, if

 $W\subseteq W^{\perp,j};$

 \cdot *j*-coisotropic, if

 $W^{\perp,j} \subseteq W + \ker \flat_1;$

 \cdot *j*-Lagrangian, if

 $W^{\perp,j} = W + \ker \flat_1.$

These definitions extend in the natural way to submanifolds.

Form bundle

Fix a manifold L and define

$$M := \bigwedge^k L.$$

If we define the tautological k-form

$$\Theta_L|_\alpha(v_1,\ldots,v_k)=\alpha(\pi_*v_1,\ldots,\pi_*v_k),$$

then

$$\Omega_L:=d\Theta_L$$

defines a canonical non-degenerate multisymplectic structure on $\bigwedge^k L$. In canonical coordinates $(x, p_{i_1,...,i_k})$ representing the form

$$\alpha = p_{i_1,\dots,i_k} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k},$$

the canonical multisymplectic form reads

$$\Omega_L = dp_{i_1,\dots,i_k} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

Form bundle

Fix a manifold L and define

$$M := \bigwedge^k L.$$

If we define the tautological k-form

$$\Theta_L|_\alpha(v_1,\ldots,v_k)=\alpha(\pi_*v_1,\ldots,\pi_*v_k),$$

then

$$\Omega_L := d\Theta_L$$

defines a canonical non-degenerate multisymplectic structure on $\bigwedge^k L.$ In canonical coordinates (x,p_{i_1,\ldots,i_k}) representing the form

$$\alpha = p_{i_1,\ldots,i_k} \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k},$$

the canonical multisymplectic form reads

$$\Omega_L = dp_{i_1,\dots,i_k} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

Form bundle

Fix a manifold L and define

$$M := \bigwedge^k L.$$

If we define the tautological k-form

$$\Theta_L|_\alpha(v_1,\ldots,v_k)=\alpha(\pi_*v_1,\ldots,\pi_*v_k),$$

then

$$\Omega_L := d\Theta_L$$

defines a canonical non-degenerate multisymplectic structure on $\bigwedge^k L.$ In canonical coordinates (x,p_{i_1,\ldots,i_k}) representing the form

$$\alpha = p_{i_1,\ldots,i_k} \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k},$$

the canonical multisymplectic form reads

$$\Omega_L = dp_{i_1,\dots,i_k} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

An useful lemma

Lemma

Let (V, ω) be a k-multisymplectic manifold and U, W be k-isotropic and 1-isotropic subspaces respectivley such that

 $V = U \oplus W.$

Then, U is k-Lagrangian.

Proof. Let $u+w\in U^{\perp,k}$, for $u\in U$, $w\in W$. Then, for all $u_1,\ldots,u_k\in U$ we have $\omega(u+w,u_1,\ldots,u_k)=\omega(w,u_1,\ldots,u_k)=0.$

We claim that $w \in \ker \flat_1$. Indeed, given $u_i + w_i \in V$,

 $\omega(w,v_1,\ldots,v_k)=\omega(w,u_1+w_1,\ldots,u_k+w_k)=\omega(w,u_1,\ldots,u_k)=0,$

where in the last equality we used that W is 1-isotropic. Therefore, if $u+w\in U^{\perp,k},$ we have

 $u+w \in U + \ker \mathfrak{b}_1,$

that is

 $U^{\perp,k} \subseteq U + \ker \flat_1,$

proving that U is k-coisotropic and, therefore, k-Lagrangiar

An useful lemma

Lemma

Let (V, ω) be a k-multisymplectic manifold and U, W be k-isotropic and 1-isotropic subspaces respectivley such that

 $V = U \oplus W.$

Then, U is k-Lagrangian.

Proof. Let $u + w \in U^{\perp,k}$, for $u \in U$, $w \in W$. Then, for all $u_1, \dots, u_k \in U$ we have

$$\omega(u+w,u_1,\ldots,u_k)=\omega(w,u_1,\ldots,u_k)=0.$$

We claim that $w \in \ker \flat_1$. Indeed, given $u_i + w_i \in V$,

 $\omega(w,v_1,\ldots,v_k)=\omega(w,u_1+w_1,\ldots,u_k+w_k)=\omega(w,u_1,\ldots,u_k)=0,$

where in the last equality we used that W is 1-isotropic. Therefore, if $u+w\in U^{\perp,k},$ we have

$$u+w \in U + \ker \flat_1,$$

that is

$$U^{\perp,k} \subseteq U + \ker \flat_1,$$

proving that U is k-coisotropic and, therefore, k-Lagrangian

Proposition

A differential *k*-form

$$\alpha: L \to \bigwedge^k L$$

defines a k-Lagrangian submanifold if and only if it is closed.

Proof. Since the vertical distribution of $L \to \bigwedge^k L$, W, defines a 1-Lagrangian distribution, and $\alpha(L)$ is always complementary to W, it is enough to show that α is k-isotropic. We have

$$\alpha^*\Omega_L=d\alpha,$$

which ends the proof.

Hamiltonian multivector fields and forms

Definition

Let (M, ω) be a multisymplectic manifold of order k. A multivector field

$$U: M \to \bigvee_q M$$

is called Hamiltonian if there exists a (k-q)-form

$$\alpha: M \to \bigwedge^{k-q} M$$

such that

$$\iota_U \omega = d\alpha.$$

We refer to α as the Hamiltonian form. When $\iota_U\omega$ is closed, we call U locally Hamiltonian.

Bracket of Hamiltonian forms

We will denote by the quotient of all Hamiltonian forms $(\Omega_H(M))$ by the space of all closed forms (Z(M))

 $\widehat{\Omega}_H(M):=\Omega_H(M)/Z(M).$

Defining

 $\deg[\alpha] := k - 1 - (\text{order of } \alpha),$

and

 $\{[\alpha],[\beta]\}^{\bullet}=-(1)^{\deg\alpha+1}[\iota_{U\wedge V}\omega],$

where

$$\iota_U \omega = d\alpha, \iota_V \omega = d\beta,$$

we have

Theorem

For every multisymplectic manifold, $(\widehat{\Omega}_H(M), \{\cdot, \cdot\}^{\bullet})$ is a graded Lie algebra.

In particular,

Proposition $(\widehat{\Omega}_{H}^{k-1}(M),\{\cdot,\cdot\}^{\bullet}) \text{ is a Lie algebra.}$

Bracket of Hamiltonian forms

We will denote by the quotient of all Hamiltonian forms $(\Omega_H(M))$ by the space of all closed forms (Z(M))

 $\widehat{\Omega}_H(M):=\Omega_H(M)/Z(M).$

Defining

$$\deg[\alpha] := k - 1 - (\text{order of } \alpha),$$

and

$$\{[\alpha], [\beta]\}^{\bullet} = -(1)^{\deg \alpha + 1} [\iota_{U \wedge V} \omega],$$

where

$$\iota_U \omega = d\alpha, \iota_V \omega = d\beta,$$

we have

Theorem

For every multisymplectic manifold, $(\widehat{\Omega}_H(M), \{\cdot, \cdot\}^{\bullet})$ is a graded Lie algebra.

In particular,

Proposition $(\widehat{\Omega}_{H}^{k-1}(M),\{\cdot,\cdot\}^{\bullet}) \text{ is a Lie algebra.}$

Bracket of Hamiltonian forms

We will denote by the quotient of all Hamiltonian forms $(\Omega_H(M))$ by the space of all closed forms (Z(M))

 $\widehat{\Omega}_H(M):=\Omega_H(M)/Z(M).$

Defining

$$\deg[\alpha] := k - 1 - (\text{order of } \alpha),$$

and

$$\{[\alpha], [\beta]\}^{\bullet} = -(1)^{\deg \alpha + 1} [\iota_{U \wedge V} \omega],$$

where

$$\iota_U \omega = d\alpha, \iota_V \omega = d\beta,$$

we have

Theorem

For every multisymplectic manifold, $(\widehat{\Omega}_{H}(M),\{\cdot,\cdot\}^{\bullet})$ is a graded Lie algebra.

In particular,

Proposition

 $(\widehat{\Omega}_{H}^{k-1}(M),\{\cdot,\cdot\}^{\bullet})$ is a Lie algebra.

Let us restrict our attention to currents ((k-1)-forms). Defining (without quatienting)

 $\{\alpha,\beta\}=\iota_{U\wedge V}\omega,$

 $\{\cdot,\cdot\}$ does not satisfy the Jacobi identity. Nevertheless,

 $\{\alpha, \{\beta, \gamma\}\} + \operatorname{cycl.} = d\iota_{U \wedge V \wedge W} \omega.$

This gives an $L_\infty-$ algebra structure on

$$\Omega^0(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{k-2}(M) \xrightarrow{d} \Omega^{k-1}_H(M).$$

Let us restrict our attention to currents ((k-1)-forms). Defining (without quatienting)

$$\{\alpha,\beta\}=\iota_{U\wedge V}\omega,$$

 $\{\cdot,\cdot\}$ does not satisfy the Jacobi identity. Nevertheless,

$$\{\alpha, \{\beta, \gamma\}\} + \operatorname{cycl.} = d\iota_{U \wedge V \wedge W} \omega.$$

This gives an $L_\infty-$ algebra structure on

$$\Omega^0(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{k-2}(M) \xrightarrow{d} \Omega^{k-1}_H(M).$$

Theorem ([LI24])

A mutivector field $U: M \to \bigvee_q M$ is locally Hamiltonian if and only if it defines a (k+1-q)-Lagrangian submanifold.

Proof. Since U(M) defines a (k + 1 - q)-isotropic submanifold, it follows from the decomposition

$$T\bigvee_{q}M\bigg|_{U(M)}=TU(M)\oplus \widetilde{W}^{k+1-q},$$

where \widetilde{W}^{k+1-q} is 1-isotropic.

Theorem ([LI24])

A mutivector field $U: M \to \bigvee_q M$ is locally Hamiltonian if and only if it defines a (k+1-q)-Lagrangian submanifold.

 ${\bf Proof.}$ Since U(M) defines a $(k+1-q)-{\rm isotropic}$ submanifold, it follows from the decomposition

$$T\bigvee_q M \bigg|_{U(M)} = TU(M) \oplus \widetilde{W}^{k+1-q},$$

where \widetilde{W}^{k+1-q} is 1-isotropic.

Coisotropic submanifolds

Coisotropic submanifolds and brackets

Proposition

If $i:N \hookrightarrow M$ is a k-coisotropic submanifold, the subspace of (k-1)-forms wich are closed on N,

 $I_N=\{[\alpha]\in \Omega^{k-1}_H(M):\ d\alpha=0\ \text{on }N\}$

defines a subalgebra of the Lie algebra $\widehat{\Omega}_{H}^{k-1}(M).$

Proof. Let $\hat{lpha}, \hat{eta} \in \hat{I}_N$. Then, there are vector fields X_lpha, X_eta satisfying

$$\iota_{X_{\alpha}}\omega = d\alpha, \ \iota_{X_{\beta}}\omega = d\beta.$$

Since $i^*d\alpha$, $i^*d\beta = 0$, we conclude that X_{α}, X_{β} take values in $(TN)^{\perp,k} \subseteq TN + \ker \flat_1$. Without loss of generality, we can assume that X_{α} , X_{β} take values in TN. Now, since

$$\{\widehat{\alpha},\widehat{\beta}\}^{\bullet}=(-1)^{(k-1)}\iota_{X_{\alpha}\wedge X_{\beta}}\omega,i^{*}\left(\iota_{X_{\alpha}\wedge X_{\beta}}\omega\right)=0,$$

concluding that

$$\{\hat{\alpha},\hat{\beta}\}^{\bullet}\in\hat{I}_N.$$

Coisotropic submanifolds and brackets

Proposition

If $i:N \hookrightarrow M$ is a k-coisotropic submanifold, the subspace of (k-1)-forms wich are closed on N,

 $I_N=\{[\alpha]\in \Omega^{k-1}_H(M):\ d\alpha=0\ \text{on }N\}$

defines a subalgebra of the Lie algebra $\widehat{\Omega}_{H}^{k-1}(M).$

Proof. Let $\hat{\alpha}, \hat{\beta} \in \hat{I}_N$. Then, there are vector fields X_{α}, X_{β} satisfying

$$\iota_{X_{\alpha}}\omega=d\alpha,\ \iota_{X_{\beta}}\omega=d\beta.$$

Since $i^*d\alpha$, $i^*d\beta = 0$, we conclude that X_{α}, X_{β} take values in $(TN)^{\perp,k} \subseteq TN + \ker \flat_1$. Without loss of generality, we can assume that X_{α} , X_{β} take values in TN. Now, since

$$\{\widehat{\alpha},\widehat{\beta}\}^{\bullet}=(-1)^{(k-1)}\iota_{X_{\alpha}\wedge X_{\beta}}\omega,i^{*}\left(\iota_{X_{\alpha}\wedge X_{\beta}}\omega\right)=0,$$

concluding that

$$\{\hat{\alpha}, \hat{\beta}\}^{\bullet} \in \hat{I}_N.$$

20/35

Given a k-coisotropic submanifold $i : N \hookrightarrow M$, we have

Proposition

The distribution $x \mapsto (T_x N)^{\perp,k} \cap T_x N \subseteq T_x N$ is involutive.

Thus, when it is regular, there exists a foliation consisting of maximal leaves of the distribution, \mathcal{F} . Then,

Theorem

When N/\mathcal{F} admits a smooth manifold structure such that the projection $\pi: N \to N/\mathcal{F}$ defines a submersion, there exists an unique multisymplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N = i^*\omega.$$

What about projection of Lagrangian submanifolds?

Given a k-coisotropic submanifold $i : N \hookrightarrow M$, we have

Proposition

The distribution $x \mapsto (T_x N)^{\perp,k} \cap T_x N \subseteq T_x N$ is involutive.

Thus, when it is regular, there exists a foliation consisting of maximal leaves of the distribution, \mathcal{F} . Then,

Theorem

When N/\mathcal{F} admits a smooth manifold structure such that the projection $\pi:N \to N/\mathcal{F}$ defines a submersion, there exists an unique multisymplectic form ω_N on N/\mathcal{F} such that

$$\pi^*\omega_N = i^*\omega.$$

What about projection of Lagrangian submanifolds?

Let L be a manifold and \mathcal{E} be a regular distribution on L. Define:

$$\bigwedge_r^k L = \{ \alpha \in \bigwedge^k L: \ \iota_{e_1 \wedge \cdots \wedge e_r} \alpha = 0, \forall e_1, \dots, e_r \in \mathcal{E} \}.$$

Proposition

 $(\bigwedge_{r}^{k}L,\Omega_{L})$ is a non-degenerate multisymplectic manifold, where Ω_{L} is (the restriction of the) canononical multisymplectic form.

These are the type of multisymplectic manifolds that appear in the study of Classical Field Theories, with r=2.

Let L be a manifold and \mathcal{E} be a regular distribution on L. Define:

$$\bigwedge_r^k L = \{ \alpha \in \bigwedge^k L: \ \iota_{e_1 \wedge \cdots \wedge e_r} \alpha = 0, \forall e_1, \dots, e_r \in \mathcal{E} \}.$$

Proposition

 $(\bigwedge_{r}^{k}L,\Omega_{L})$ is a non-degenerate multisymplectic manifold, where Ω_{L} is (the restriction of the) canononical multisymplectic form.

These are the type of multisymplectic manifolds that appear in the study of Classical Field Theories, with r=2.

A multisymplectic manifold of type (k, r) is a tuple $(M, \omega, W, \mathcal{E})$, where (M, ω) is a non-degenerate multisymplectic manifold, W is a regular, integrable, 1-Lagrangian distribution, and \mathcal{E} is a subbundle of TM/W satisfying

a)
$$\iota_{e_1\wedge\cdots\wedge e_r}\omega=0,$$
 for all $e_i\in TM$ such that $e_i+W\in\mathcal{E};$ b)
$$_k$$

$$\dim \bigwedge_{r}^{\kappa} T_{q}M/W_{q} = \dim M.$$

Theorem

A multisymplectic manifold of type (k,r) (M,ω,W,\mathcal{E}) is locally multisymplectomorphic to $\bigwedge_r^k L$.

A multisymplectic manifold of type (k, r) is a tuple $(M, \omega, W, \mathcal{E})$, where (M, ω) is a non-degenerate multisymplectic manifold, W is a regular, integrable, 1-Lagrangian distribution, and \mathcal{E} is a subbundle of TM/W satisfying

a)
$$\iota_{e_1\wedge\cdots\wedge e_r}\omega=0,$$
 for all $e_i\in TM$ such that $e_i+W\in\mathcal{E};$ b)
k

$$\dim \bigwedge_{r}^{\kappa} T_{q}M/W_{q} = \dim M.$$

Theorem

A multisymplectic manifold of type (k,r) (M,ω,W,\mathcal{E}) is locally multisymplectomorphic to $\bigwedge_{r}^{k} L$.

Let L be a smooth manifold, $i:Q\subseteq L$ be a submanifold, and $\mathcal E$ be a regular distribution. Then,

Proposition

 $N:=igwedge_{r}^{k}Ligert_{Q}$ defines a k-coisotropic submanifold, and for $lpha\in N$,

$$\left(T_{\alpha}N\right)^{\perp,k}\cong 0\oplus \ker i^{*},$$

where

$$i^*: \bigwedge_r^k L \to \bigwedge_r^k Q$$

is the restriction. Here, the vertical forms are taken with respect to $\tilde{\mathcal{E}}=\mathcal{E}\cap TQ$ (not necessarily of constant rank).

Let L be a smooth manifold, $i:Q\subseteq L$ be a submanifold, and $\mathcal E$ be a regular distribution. Then,

Proposition

 $N := \bigwedge_{r}^{k} L|_{Q}$ defines a k-coisotropic submanifold, and for $\alpha \in N$,

$$\left(T_{\alpha}N\right)^{\perp,k}\cong 0\oplus \ker i^{*},$$

where

$$i^*: \bigwedge_r^k L \to \bigwedge_r^k Q$$

is the restriction. Here, the vertical forms are taken with respect to $\tilde{\mathcal{E}} = \mathcal{E} \cap TQ$ (not necessarily of constant rank).

Proof. (r = 0 for symplicity) To prove the previous equality, we just need to prove it in the linear case

$$U \oplus \bigwedge^k L^* \subseteq L \oplus \bigwedge^k L^*.$$

Let $(v, \alpha) \in (U \oplus \bigwedge^k L^*)^{\perp,k}$. Then,

- 1. $0=\Omega_L((v,\alpha),(0,\beta),(u_2,0),\ldots,(u_k,0))=\beta(v,u_2,\ldots,u_k),$ which implies v=0.
- 2. $0 = \Omega_L((v, \alpha), (u_1, 0), \dots, (u_k, 0)) = \alpha(u_1, \dots, u_k)$, which implies

 $\alpha \in \ker i^*$.

Proof. (r = 0 for symplicity) To prove the previous equality, we just need to prove it in the linear case

$$U \oplus \bigwedge^k L^* \subseteq L \oplus \bigwedge^k L^*.$$

Let $(v, \alpha) \in (U \oplus \bigwedge^k L^*)^{\perp,k}$. Then,

- 1. $0=\Omega_L((v,\alpha),(0,\beta),(u_2,0),\ldots,(u_k,0))=\beta(v,u_2,\ldots,u_k),$ which implies v=0.
- 2. $0=\Omega_L((v,\alpha),(u_1,0),\ldots,(u_k,0))=\alpha(u_1,\ldots,u_k),$ which implies

 $\alpha \in \ker i^*.$

When $\tilde{\mathcal{E}} = \mathcal{E} \cap Q$ has constant rank, $(TN)^{\perp,k}$ has constant rank and thus, is an involutive distribution. For $x \in Q$, the leaf through $(x,0) \in N$ is

$$\ker\left(i^*:\bigwedge_r^kT^*_xL\to\bigwedge_r^kT^*_xQ\right).$$

Therefore,

Theorem

For $N = \bigwedge_{r}^{k} L|_{Q}$, where $TQ \cap \mathcal{E}$ has constant rank,

$$N/\mathcal{F} \cong \bigwedge_{r}^{k} Q.$$

Furthermore, the multisymplectic structure induced on the quotient is the natural multisymplectic structure.

When $\tilde{\mathcal{E}} = \mathcal{E} \cap Q$ has constant rank, $(TN)^{\perp,k}$ has constant rank and thus, is an involutive distribution. For $x \in Q$, the leaf through $(x,0) \in N$ is

$$\ker\left(i^*:\bigwedge_r^kT^*_xL\to\bigwedge_r^kT^*_xQ\right).$$

Therefore,

Theorem

For $N=\bigwedge_r^k L\big|_Q$, where $TQ\cap \mathcal{E}$ has constant rank, $N/\mathcal{F}\cong \bigwedge_r^k Q.$

Furthermore, the multisymplectic structure induced on the quotient is the natural multisymplectic structure.

Projection of Lagrangian submanifolds (example)

Define a Lagrangian submanifold through a closed form

$$\alpha: L \to \bigwedge_{r}^{k} L.$$

Then, the projection to the quotient

$$\pi(\alpha(L)\cap N);\ \pi:N\to N/\mathcal{F}$$

is the image of

$$i^*\alpha: Q \to \bigwedge_r^k Q,$$

which is Lagrangian, because $i^*\alpha$ is closed as well.

Theorem

In our example, Lagrangian submanifold transversal to the vertical distribution reduce to Lagrangian submanifolds.

Define a Lagrangian submanifold through a closed form

$$\alpha: L \to \bigwedge_r^k L.$$

Then, the projection to the quotient

$$\pi(\alpha(L)\cap N);\ \pi:N\to N/\mathcal{F}$$

is the image of

$$i^*\alpha: Q \to \bigwedge_r^k Q,$$

which is Lagrangian, because $i^*\alpha$ is closed as well.

Theorem

In our example, Lagrangian submanifold transversal to the vertical distribution reduce to Lagrangian submanifolds.

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r). A submanifold $i : N \hookrightarrow M$ is called vertical if $W|_N \subseteq TN$.

Theorem ([Ll24])

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r), $i : N \hookrightarrow M$ be a vertical k-coisotropic submanifold, and $j : L \hookrightarrow M$ be a k-Lagrangian submanifold complementary to W. Then there is a neighborhood U of L in M, a submanifold $Q \hookrightarrow L$, a neighborhood V of L in $\bigwedge_r^k L$, and a multisymplectomorphism

$$\phi: U \to V$$

satisfying

a) ϕ is the identity on L; b) $\phi(N \cap U) = \bigwedge_{r}^{k} L|_{O} \cap V.$

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r). A submanifold $i : N \hookrightarrow M$ is called vertical if $W|_N \subseteq TN$.

Theorem ([LI24])

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r), $i : N \hookrightarrow M$ be a vertical k-coisotropic submanifold, and $j : L \hookrightarrow M$ be a k-Lagrangian submanifold complementary to W. Then there is a neighborhood U of L in M, a submanifold $Q \hookrightarrow L$, a neighborhood V of L in $\bigwedge_r^k L$, and a multisymplectomorphism

$$\phi: U \to V$$

satisfying

a) ϕ is the identity on L; b) $\phi(N \cap U) = \bigwedge_{r}^{k} L|_{O} \cap V.$

Theorem (Normal form of Lagrangian submanifolds [LDS03])

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r), $j : L \hookrightarrow M$ be a k-Lagrangian submanifold complementary to W. Then there is a neighborhood U of L in M, a neighborhood V of L in $\bigwedge_r^k L$, and a multisymplectomorphism

$$\phi:U\to V$$

satisfying

a) ϕ is the identity on L;

b) $\phi(U) = V$.

Idea of the proof of local form of coisotropic submanifolds

1. Take

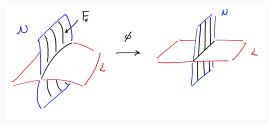
$$\phi: U \to V$$

the multisymplectomorphism of the previous local form, where

$$L \subseteq U \subseteq M; \ L \subseteq V \subseteq \bigwedge_{r}^{k} L.$$

- 2. Define $Q := \phi(L \cap N)$.
- 3. Since ϕ preserves the vertical distributions, it also preserves their leaves and then,

$$\phi(U\cap N) = \bigwedge_r^k L\big|_Q \cap V.$$



This local characterization allows us to prove:

Theorem ([LI24])

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type $(k, r), i : N \hookrightarrow M$ be a vertical k-coisotropic submanifold, and $j : L \hookrightarrow M$ be k-Lagrangian submanifold complementary to W. If $TN/W \cap \mathcal{E}$ has constant rank, so does $(TN)^{\perp,k}$ and we have that, denoting by $\pi : N \to N/\mathcal{F}$ the canonical projection, $\pi(L \cap N)$ is Lagrangian in (N, ω_N) .

A general result is not possible, since we can easily find counterexamples.

Let $L = \langle l_1, l_2, l_3 \rangle$ be a 3-dimensional vector space and define

$$V := L \oplus \bigwedge^2 L^*.$$

Let l^1, l^2, l^3 be the dual basis induced on L^* and denote

 $\alpha^{ij} := l^i \wedge l^j.$

Then

$$V=\langle l_1,l_2,l_3,\alpha^{12},\alpha^{13},\alpha^{23}\rangle.$$

Let $l^1, l^2, l^3, \alpha_{12}, \alpha_{13}, \alpha_{23}$ be the dual basis. We have

$$\Omega_L = \alpha_{12} \wedge l^1 \wedge l^2 + \alpha_{13} \wedge l^1 \wedge l^3 + \alpha_{23} \wedge l^2 \wedge l^3.$$

Define

$$N:=\langle l_1+l_2, l_1+\alpha^{23}, l_2+\alpha^{13}, l_3, \alpha^{12}\rangle.$$

Then N is a 2-coisotropic subspace. Indeed, a quick calcultion shows $N^{\perp,2} = 0$. This implies that the quotient space $N/N^{\perp,2}$ is (isomorphic to) N. Now, taking as the 2-Lagrangian subspace $L = \langle l_1, l_2, l_3 \rangle$, we have

$$L \cap N = \langle l_1 + l_2, l_3 \rangle.$$

However, this does not define a 2-Lagrangian subspace of $(N, \Omega_L|_N)$, since $\alpha^{12} \in (N \cap L)^{\perp,2}$, but $\alpha^{12} \notin (L \cap W)$.

Final remarks and future research

- We gave an interpretation of dynamics as Lagrangian submanifolds.
- We proved a coisotropic reduction theorem in a particular class of multisymplectic manifolds.
- For future research we have proposed the following:
 - Apply the results obtained to Field Theories (regularization, constraint analysis, etc)
 - Extend these results to multicontact geometry for the study of dissipative fields.

Thank you for your attention!

Questions?