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The geometry of calculus of
variations



The geometric setting I

What to minimize/maximize? Sections!

Fixed some fibered manifold

Y πYX−−→ X with coordinates (xµ, y i) 7→ xµ,

we want to find a section

ϕ : X → Y , (xµ) 7→ (xµ, y i = ϕi(xµ))

minimizing/maximizing the functional

J [ϕ] =
∫

X
L

(
xµ, ϕi(xµ), ∂ϕi

∂xµ
,

∂2ϕi

∂xµ∂xν
, . . .

)
dnx .

We will focus on first order theories,

J [ϕ] =
∫

X
L

(
xµ, ϕi(xµ), ∂ϕi

∂xµ

)
dnx .
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The geometric setting II

We can interpret
L

(
xµ, ϕi(xµ), ∂ϕi

∂xµ

)
dnx

as an n-form on the first jet bundle

J1πYX with coordinates (xµ, y i , z i
µ).

We call it the Lagrangian density

L = L(zµ, y i , z i
µ)dnx .

We can rewrite the action as

J [ϕ] =
∫

X
(j1ϕ)∗L.
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J [ϕ] =
∫

X
(j1ϕ)∗L,

where L ∈ Ωn(J1πYX ) is the Lagrangian dentisy.
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The Euler-Lagrange equations I

If ϕ is a minimizer/maximizer (more generally, stationary section),
d
dt

∣∣∣∣
t=0

J [ϕt ] = 0, ∀ variation ϕt .
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The Euler-Lagrange equations II

Equivalently,
0 =

∫
X

d
dt

∣∣∣∣
t=0

(j1ϕt)∗L.

Locally, we get
∂L
∂y i = d

dxµ

(
∂L
∂z i

µ

)
.

What about intrinsic Euler-Lagrange equations?

If we define
ξ := d

dt

∣∣∣∣
t=0

ϕt = ξi ∂

∂y i ∈ X(Y ),

ξ(1) := d
dt

∣∣∣∣
t=0

j1ϕt = ξi ∂

∂y i +
(

∂ξi

∂xµ
+ ∂x i

∂y j z j
µ

)
∂

∂z j
µ

∈ X(J1πYX ).
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The Euler-Lagrange equations III

If we define
ξ := d

dt

∣∣∣∣
t=0

ϕt = ξi ∂

∂y i ∈ X(Y ),

ξ(1) := d
dt

∣∣∣∣
t=0

j1ϕt = ξi ∂

∂y i +
(

∂ξi

∂xµ
+ ∂x i

∂y j z j
µ

)
∂

∂z j
µ

∈ X(J1πYX ),

0 = d
dt

∣∣∣∣
t=0

J [ϕt ] =
∫

X
(j1ϕ)∗£ξ(1)L, for every vertical ξ ∈ X(Y )

Applying Stokes’ Theorem

0 =
∫

X
(j1ϕ)∗ιξ(1)dL +

∫
X

dιξ(1)L =
∫

X
(j1ϕ)∗ιξ(1)dL.
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The Euler-Lagrange equations IV

0 =
∫

X
(j1ϕ)∗ιξ(1)dL for every vertical ξ ∈ X(Y ).

Does not yield equations.

Idea: modify L

We want to find an n-form ΘL satisfying

(j1ϕ)∗L = (j1ϕ)∗ΘL

such that ϕ is an stationary field of the action if and only if

0 =
∫

X
(j1ϕ)∗ιηdΘL for every η ∈ X(J1πYX ).
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The Euler-Lagrange equations V

Proposition
There is such ΘL, and can be intrinsically defined (using the geometry of
J1πYX ).

Locally,
ΘL = ∂L

∂z i
µ

dy i ∧ dn−1xµ −
(

∂L
∂z i

µ

z i
µ − L

)
dnx

and it is called the Poincaré-Cartan form.

Corollary (Intrinsic Euler-Lagrange equations)
A field ϕ : X → Y is stationary if and only if it satifies

(j1ϕ)∗ιηdΘL = 0, for every η ∈ X(J1πYX ).
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Looking for solutions

To find solutions, we can look for distributions on J1πYX → such that an
integral section of such this distribution σ : X → J1πYX satisfies

σ∗ιηΩL = 0, ∀η ∈ X(J1πYX ).

We can define such distributions via decomposable n-multivector fields

U = X1 ∧ · · · ∧ Xn.

Then, being stationary is characterized by ιUΩL = 0.
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Disclaimer

Giving such a multivector field U does not immediately give a solution:

• We need to make sure that the corresponding distribution is
integrable.

• Even if it is integrable, it may not be holonomic. That is, that the
corresponding integral section σ : X → J1πYX could fail to be the
jet lift of some section

ϕ : X → Y .

When L is regular, this is not an issue.
• Even if it satisfies the previous conditions, there may not exist global

sections of Y πYX−−→ X .
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Summary

• Fields, denoted by ϕ, are sections of a fibered manifold Y πYX−−→ X .

• A first order variational problem is defined through a Lagrangian
density L on J1πYX (which defines an n-form on X at each point),
and the action can be expressed as

J [ϕ] =
∫

X
(j1ϕ)∗L.

• If we define the multisymplectic form as

ΩL := −dΘL,

stationary fields are characterized by

(j1ϕ)∗ιηΩL = 0, for every η ∈ X(J1πYX ).

In particular, we can look for decomposable horizontal n-multivector
fields U satisfying

ιUΩL = 0.

13



Multisymplectic geometry



Basic definitions I

Definition
A multisymplectic manifold of order n is a pair (M, ω), where M is a
smooth manifold, and ω is a closed (n + 1)−form.

An immediate example is the bundle of n-forms on a manifold Q.

M :=
n∧

T ∗Q τ−→ Q

has a canonical n-form,

Θ|α(v1, . . . , vn) := α(τ∗v1, . . . , τ∗vn)

and
Ω := −dΘ

defines a multisymplectic structure on M.
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Basic definitions II

Definition
Let (M, ω) be a multisymplectic manifold of order n. A q-multivector
field U on M (q ≤ n) is called Hamiltonian if

ιUω = dα,

for certain (n − q)-form α, which will also be called Hamiltonian.

• Top degree Hamiltonian multivector fields (n-multivector fields)
represent solutions to the variational problem,

ιUω = dH, H ∈ C∞(M).

• Hamiltonian vector fields X ∈ X(M) are symmetries, £X ω = 0 and
the corresponding (n − 1)−form can be thought of as the Noether
current of the symmetry.
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Noether’s Theorem I

Given a Hamiltonian function H, and a top degree decomposable
multivector field U such that

ιUω = dH,

let
j : Σ ↪→ M

be an n-dimensional integral submanifold of U (which can be thought of
as a distribution).
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Noether’s Theorem II

Theorem
Let X be a Hamiltonian vector field and α the corresponding
(n − 1)-form (the current),

ιX ω = dα.

Then, if X is a symmetry of H, that is,

X (H) = 0,

α is a conserved current on Σ, this means d(j∗α) = 0.

Proof.
Indeed,

(dα)(U) = ιUιX Ω = (−1)nιX ιUΩ = (−1)nX (H) = 0.

17



Noether’s Theorem III

What does conserved means here?
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Noether’s Theorem IV

How can we obtain the corresponding current from the
symmetry defined by X?
Theorem
Let (M, ω) be an exact multisymplectic manifold, that is, there exists a
multisymplectic potential

ω = −dθ.

Then, if X is a symmetry of θ, £X θ = 0 (and hence of ω),

α := −ιX θ

is a current for X.

Proof.
Indeed,

dα = −dιX θ = −ιX dθ = ιX ω.
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Brackets I

Proposition
Let (M, ω) be a multisymplectic manifold and α, β be Hamiltonian
forms, with Hamiltonian multivector fields, X , Y , respectively. Then

{α, β} := ιY ιX ω

is a Hamiltonian form. Its Hamiltonian multivector field is −[X , Y ] (the
Schouten-Nijenhuis bracket).

Definition
Define the Poisson bracket of two Hamiltonian forms by

{α, β} := −(−1)(k−1−ord α)ιY ιX ω,

which is again Hamiltonian by the previous proposition.
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Brackets II

What are the properties that {·, ·} satisfies?

If we define a new degree:

deg α := k − 1 − ordα,

• It is graded-skew-symmetric, that is,

{α, β} = (−1)deg α deg β{β, α}.

• Its satisfies graded-Jacobi identity (up to an exact form)

(−1)deg α deg γ{{α, β}, γ} + cycl. = exact term

21



Brackets III

Theorem
Let (M, ω) be a multisymplectic manifold. Then, the space of all
Hamiltonian forms modulo exact forms is a graded Lie algebra.

Some remarks:

• When restricted to the subspace of forms of deg α = 0, that is,
alpha = k − 1, we have a Lie algebra, the Lie algebra of currents.

• Some brackets are zero just by degree considerations, more
particularly, when

deg α + deg β > k − 1,

that is, the bracket is trivial when

ord α + ord β < k − 1.

• Dynamics can be characterized by this Poisson bracket. Indeed, fixed
a Hamiltonian, an n- multivector field U is a solution (ιUω = dH) if

{α, H} = (dα)(U).
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...and more!

Multisymplectic geometry is a very active area of research, and there has
been a lot of interest in generalizing classical results from symplectic
geometry to the multisymplectic setting.

• Reduction by symmetries.
• Coisotropic reduction.
• Constraint analysis.
• Darboux-like Theorems.
• Is everything a Lagrangian submanifold? (Weinstein’s creed)
• Alogue to Poisson geometry and Dirac geometry (work in

progress...).
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Summary

• Multisymplectic geometry gives an abstract formulation of field
theories (calculus of variations).

• We can talk about the dynamics and conserved quantities with
Hamiltonian multivector fields and forms.

• We can prove Noether’s Theorem in this formalism.
• Hamiltonian forms are endowed with a graded Lie algebra structure

(when quotiented by exact forms) which yields a Lie algebra when
restricted to currents, (n − 1)−forms.
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Examples



Classical Mechanics I

We recover Classical Mechanics by taking the bundle

R × Q π−→ R.

Then, a section is just a curve γ : R → Q.
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Classical Mechanics II

The jet bundle:
J1π = R × TQ,

and the Poincaré-Cartan form fixed a Lagrangian (which will be identified
with a function)

L : R × TQ → R

is
θL = ∂L

∂q̇i dq̇i −
(

∂L
∂q̇i q̇i − L

)
dt.

Dyanmics are vector fields X satisfying

• Stationary condition, ιX dθL = 0.

• Normalization, dt(X ) = 1.

We recover cosymplectic geometry!
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Classical Mechanics III

What about Noether Theorem? Suppose L t-invariant. Then, time
translations ∂

∂t define a symmetry of the corresponding multisymplectic
form. Hence, by previous considerations, ι ∂

∂t
θL is an conserved current,

that is, a conserved quantity. Locally,

ι ∂
∂t

θL = ∂L
∂q̇i q̇i − L = H,

obtaining conservation of energy.
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Hyperelastic materials I

We will give an example of hyperelastic dynamics in a fixed background.

• Fix a body (B, G), ρ, where B is a smooth manifold, G is a
Riemannian metric on B, and ρ is the mass density.

• Fix a background manifold (M, g), with M a smooth manifold and g
a Riemannian metric on B.

Dynamics of B on M are time-dependent embeddings

ϕt : B → M.

We model these embeedings as fields

Y π−→ X .
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Hyperelastic materials II

• X := R × B.

• Y := R × B × M.

• The projection π is the trivial choice.

There is an issue:

• Arbitrary fields of the previous bundle ϕ : X → Y do not necessarily
correspond to time-dependent embeddings.

But not for long...

• Nevertheless, we can still apply the theory developed because
embeddings are stable under local perturbations (variations).

29



Hyperelastic materials III

What is the Lagrangian?

Notation:

• Coordinates on B are denoted by (x i) = x1, . . . , xn−1.

• When adding the time coordinate t = x0, we get coordinates (xµ)
on X .

• Coordinates on M are denoted by (y a).

Then, the Lagrangian is:

L = K − P

= 1
2

√
det Gρgabza

0 zb
0 dn+1x −

√
det GρW (xµ, G , g , za

i )dn+1x ,

where W is the stored energy.
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Hyperelastic materials IV

The Poincaré-Cartan form is

ΘL = ρgabzb
0
√

det Gdya ∧ dnx0 − ρ
∂V
∂za

i

√
det Gdya ∧ dnxi

−
(

−∂W
∂za

i
za

i + 1
2gabza

0 zb
0 + W

)
ρ
√

det Gdn+1x

How can we apply Noether’s Theorem?

• There is a clear symmetry, time-invariance.
• Then, the current obtained through the theory is

α = −ρ
∂W
∂za

i

√
det Gdy idnxi0

+
(

1
2gabza

0 zb
0 + W − ∂W

∂za
i

za
i

)
ρ
√

det Gdn+1x0.
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Hyperelastic materials V

on holonomic sections it takes the expression

α =
(

1
2gabza

0 zb
0 + W

)
ρ
√

det Gdn+1x0 + ρ
∂W
∂za

i
za

0
√

det Gdnxi

Since
e =

(
1
2gabza

0 zb
0 + W

)
ρ
√

det Gdn+1x0

can be though of as the energy dentisy. This gives us a conservation law,
where

ρ
∂W
∂za

i
za

0
√

det Gdnxi

is the energy flux.
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Final remarks

• Multisymplectic geometry is a tool that allows us to study
variational problems (field theory, Classical Mechanics, some
problems in material modelling...)

• It is a very active area of research, both from the mathematical and
the physical point of view.

• Applications to material modelling seem interesnting, have been
practically unexplored.
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Thank you for your attention!
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