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The symplectic case

A symplectic manifold is a manifold pair (M,w), where M is a
manifold, and w is a closed, non-degenerate 2-form; where
non-degeneracy means that

V> LW

is a diffeomorphism between T'M and T*M .




Definition 0.2 (Symplectic orthogonal, coisotropic and Lagrangian
submanifold) ‘



Definition 0.2 (Symplectic orthogonal, coisotropic and Lagrangian
submanifold) ‘

Given a subspace W C Ty M, for some q € M, we define the
symplectic orthogonal

Wt = {v e T,M|w(v,w) =0,Yw € W}.
We say that a submanifold i : N < M s coisotropic if
T,N* c T,N,Vq € N,
and say that it is Lagrangian if

T,N*+ =T,N,vq € N.
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symplectic orthogonal
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T,N* c T,N,Vq € N,
and say that it is Lagrangian if
T,N*+ =T,N,vq € N.

On every coisotropic submanifold N, we can define the coisotropic
distribution TN (smooth selection of subspace of the tangent
space at every point):

1
q— T,N+* c T,N.



Proposition 0.1 |

The coisotropic distribution TN~ is integrable, that is, arises from
a maximal foliation F of N.




Proposition 0.1 |

The coisotropic distribution TN~ is integrable, that is, arises from
a maximal foliation F of N.

Theorem 1 (Weinstein coisotropic reduction theorem) |

If N/F has a manifold structure such that the canonical projection
m: N — N/F defines a submersion, there exists an unique
symplectic form wy on N/F such that

oy = T w.

Furthermore, let L — M be a Lagrangian submanifold that has
clean intersection with N (I,N N L =T,N NT,L). Then, if
m(L N N) is a submanifold, it is Lagrangian in (N/F,wn).



The Cosymplectic, Contact, and Cocontact case.

Definition 0.3 (Cosymplectic, Contact and Cocontact manifolds) |

@ A cosymplectic manifold is a triple (M,w, ), where M is a
(2n 4 1)-dimensional manifold, w and 6 are closed 2 and 1
forms, respectively, such that

v = Lyw + 0(v)6

is a diffeomorphism.
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Definition 0.3 (Cosymplectic, Contact and Cocontact manifolds)

@ A cosymplectic manifold is a triple (M,w, ), where M is a
(2n 4 1)-dimensional manifold, w and 6 are closed 2 and 1
forms, respectively, such that

v = Lyw + 0(v)0

is a diffeomorphism.

@ A contact manifold is a couple (M,n), where M is a
(2n + 1)-dimensional manifold, and n is a 1-form such that

v = Lydn +n(v)n

is a diffeomorphism.



Definition 0.4 (Cosymplectic, Contact and Cocontact manifolds) |

A cocontact manifold is a triple (M,n,0), where M is a
(2n + 2)-dimensional manifold, n and 0 are 1-forms (0 closed) such
that

v Lpdn + n(v)n + 6(v)0

is a diffeomorphism.

The previous diffeomorphisms will be denoted by b, and § := b~!.



Definition 0.4 (Cosymplectic, Contact and Cocontact manifolds) |

A cocontact manifold is a triple (M,n,0), where M is a
(2n + 2)-dimensional manifold, n and 0 are 1-forms (0 closed) such
that

v Lpdn + n(v)n + 6(v)0

is a diffeomorphism.

The previous diffeomorphisms will be denoted by b, and § := b~!.
This allows us to define the bivector field:

wq(fag, 8B4) in the cosympelctic case,

Ag(ag, By) == {

—dn(foy, §6,), in the contact and cocontact case



The bivector A defines a canonical morphism

fia T M — TM; o = Lo, Mg



The bivector A defines a canonical morphism

fia T M — TM; o = Lo, Mg

Definition 0.5 (A-orthogonal, coisotropic)
Given a subspace W C T; M, we define

Wa .= g, (W9,

where WO C Ty M is the annhilator of W. We say that a
submanifold i : N — M is coisotropic if

T,N*+ C T,N,Vq € N.



Furthermore, we have the natural distributions:

@ In cosymplectic manifolds:

H :=Ker8,V := Kerw.
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Furthermore, we have the natural distributions:

@ In cosymplectic manifolds:

H :=Ker8,V := Kerw.

@ In contact manifolds:

H :=Kern,V = Kerdn.

@ In cocontact manifolds:
H =KernnKerb,

V., =KerdnnKerd, H, = Ker6
V: = KerdnNKern, Hy = Kern
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