Coisotropic reduction in Symplectic, Cosymplectic, Contact, and Cocontact geometry BYMAT 2023

Rubén Izquierdo López

Universidad Complutense de Madrid-ICMAT

12 de noviembre de 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition 0.1 (Symplectic manifold)

A symplectic manifold is a manifold pair (M, ω) , where M is a manifold, and ω is a closed, non-degenerate 2-form; where non-degeneracy means that

 $v \mapsto \iota_v \omega$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is a diffeomorphism between TM and T^*M .

Definition 0.2 (Symplectic orthogonal, coisotropic and Lagrangian submanifold)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition 0.2 (Symplectic orthogonal, coisotropic and Lagrangian submanifold)

Given a subspace $W \subset T_qM$, for some $q \in M$, we define the symplectic orthogonal

$$W^{\perp} := \{ v \in T_q M \, | \, \omega(v, w) = 0, \forall w \in W \}.$$

We say that a submanifold $i: N \hookrightarrow M$ is coisotropic if

$$T_q N^{\perp} \subset T_q N, \forall q \in N,$$

and say that it is Lagrangian if

$$T_q N^{\perp} = T_q N, \forall q \in N.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition 0.2 (Symplectic orthogonal, coisotropic and Lagrangian submanifold)

Given a subspace $W \subset T_qM$, for some $q \in M$, we define the symplectic orthogonal

$$W^{\perp} := \{ v \in T_q M \, | \, \omega(v, w) = 0, \forall w \in W \}.$$

We say that a submanifold $i: N \hookrightarrow M$ is coisotropic if

$$T_q N^{\perp} \subset T_q N, \forall q \in N,$$

and say that it is Lagrangian if

$$T_q N^{\perp} = T_q N, \forall q \in N.$$

On every coisotropic submanifold N, we can define the coisotropic distribution TN^{\perp} (smooth selection of subspace of the tangent space at every point):

$$q\mapsto T_qN^\perp\subset T_qN.$$
 () () () () () ()

Proposition 0.1

The coisotropic distribution TN^{\perp} is integrable, that is, arises from a maximal foliation \mathcal{F} of N.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition 0.1

The coisotropic distribution TN^{\perp} is integrable, that is, arises from a maximal foliation \mathcal{F} of N.

Theorem 1 (Weinstein coisotropic reduction theorem)

If N/\mathcal{F} has a manifold structure such that the canonical projection $\pi: N \to N/\mathcal{F}$ defines a submersion, there exists an unique symplectic form ω_N on N/\mathcal{F} such that

 $\pi^*\omega_N = i^*\omega.$

Furthermore, let $L \hookrightarrow M$ be a Lagrangian submanifold that has clean intersection with N ($T_qN \cap L = T_qN \cap T_qL$). Then, if $\pi(L \cap N)$ is a submanifold, it is Lagrangian in $(N/\mathcal{F}, \omega_N)$.

Definition 0.3 (Cosymplectic, Contact and Cocontact manifolds)

• A cosymplectic manifold is a triple (M, ω, θ) , where M is a (2n + 1)-dimensional manifold, ω and θ are closed 2 and 1 forms, respectively, such that

$$v \mapsto \iota_v \omega + \theta(v)\theta$$

is a diffeomorphism.

Definition 0.3 (Cosymplectic, Contact and Cocontact manifolds)

• A cosymplectic manifold is a triple (M, ω, θ) , where M is a (2n + 1)-dimensional manifold, ω and θ are closed 2 and 1 forms, respectively, such that

$$v \mapsto \iota_v \omega + \theta(v)\theta$$

is a diffeomorphism.

• A contact manifold is a couple (M, η) , where M is a (2n + 1)-dimensional manifold, and η is a 1-form such that

$$v \mapsto \iota_v d\eta + \eta(v)\eta$$

is a diffeomorphism.

Definition 0.4 (Cosymplectic, Contact and Cocontact manifolds)

A cocontact manifold is a triple (M, η, θ) , where M is a (2n+2)-dimensional manifold, η and θ are 1-forms (θ closed) such that

$$v \mapsto \iota_v d\eta + \eta(v)\eta + \theta(v)\theta$$

is a diffeomorphism.

The previous diffeomorphisms will be denoted by \flat , and $\sharp := \flat^{-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition 0.4 (Cosymplectic, Contact and Cocontact manifolds)

A cocontact manifold is a triple (M, η, θ) , where M is a (2n+2)-dimensional manifold, η and θ are 1-forms (θ closed) such that

$$v \mapsto \iota_v d\eta + \eta(v)\eta + \theta(v)\theta$$

is a diffeomorphism.

The previous diffeomorphisms will be denoted by \flat , and $\sharp := \flat^{-1}$. This allows us to define the bivector field:

 $\Lambda_q(\alpha_q,\beta_q) := \begin{cases} \omega_q(\sharp\alpha_q,\sharp\beta_q) \text{ in the cosympelctic case,} \\ -d\eta(\sharp\alpha_q,\sharp\beta_q), \text{ in the contact and cocontact case} \end{cases}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The bivector Λ defines a canonical morphism

$$\sharp_{\Lambda}: T^*M \to TM; \ \alpha_q \mapsto \iota_{\alpha_q} \Lambda_q.$$

The bivector Λ defines a canonical morphism

$$\sharp_{\Lambda}: T^*M \to TM; \ \alpha_q \mapsto \iota_{\alpha_q} \Lambda_q.$$

Definition 0.5 (Λ -orthogonal, coisotropic)

Given a subspace $W \subset T_q M$, we define

 $W^{\perp_{\Lambda}} := \sharp_{\Lambda}(W^0),$

where $W^0 \subset T_q^*M$ is the annhibitor of W. We say that a submanifold $i: N \to M$ is coisotropic if

 $T_q N^{\perp_{\Lambda}} \subset T_q N, \forall q \in N.$

Furthermore, we have the natural distributions:

• In cosymplectic manifolds:

$$\mathcal{H} := \operatorname{Ker} \theta, \mathcal{V} := \operatorname{Ker} \omega.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Furthermore, we have the natural distributions:

• In cosymplectic manifolds:

$$\mathcal{H} := \operatorname{Ker} \theta, \mathcal{V} := \operatorname{Ker} \omega.$$

• In contact manifolds:

$$\mathcal{H} := \operatorname{Ker} \eta, \mathcal{V} = \operatorname{Ker} d\eta.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Furthermore, we have the natural distributions:

• In cosymplectic manifolds:

$$\mathcal{H} := \operatorname{Ker} \theta, \mathcal{V} := \operatorname{Ker} \omega.$$

• In contact manifolds:

$$\mathcal{H} := \operatorname{Ker} \eta, \mathcal{V} = \operatorname{Ker} d\eta.$$

• In cocontact manifolds:

$$\mathcal{H} = \operatorname{Ker} \eta \cap \operatorname{Ker} \theta,$$
$$\mathcal{V}_z = \operatorname{Ker} d\eta \cap \operatorname{Ker} \theta, \mathcal{H}_z = \operatorname{Ker} \theta$$
$$\mathcal{V}_t = \operatorname{Ker} d\eta \cap \operatorname{Ker} \eta, \mathcal{H}_t = \operatorname{Ker} \eta$$

Symplectic	Arbitrary	$(N/\mathcal{F}, \omega_N)$, symplectic
Cosymplectic	Vertical	$(N/\mathcal{F}, \theta_N, \Omega_N)$, cosymplectic
	Horizontal	(N, Ω_N) , symplectic
	Arbitrary	Foliation consisting of symplectic manifolds of N/\mathcal{F}
Contact	Vertical	$(N/\mathcal{F},\eta_N)$, contact
	Horizontal	$\dim N/\mathcal{F} = 0$
Cocontact	tz-vertical	$(N/\mathcal{F}, \theta_N, \eta_N)$, cocontact
	t-vertical, z -horizontal	$\dim N/\mathcal{F} = 1, \theta_N \neq 0$
	z-vertical, t -horizontal	$(N/\mathcal{F}, \eta_N)$, contact
	tz-horizontal	$\dim N/\mathcal{F} = 0$
SHS	Vertical	$(N/\mathcal{F}, \omega_N, \lambda_N)$, stable Hamiltonian
	Horizontal	$(N/\mathcal{F}, \omega_N)$, symplectic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶