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Abstract
In this paper we study coisotropic reduction in different types of dynamics
according to the geometry of the corresponding phase space. The relevance
of coisotropic reduction is motivated by the fact that these dynamics can
always be interpreted as Lagrangian or Legendrian submanifolds. Furthermore,
Lagrangian or Legendrian submanifolds can be reduced by a coisotropic one.
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1. Introduction

The introduction of symplectic geometry in the study of Hamiltonian systems was a tremend-
ous breakthrough, both in quantitative and qualitative aspects. For example, we have the results
in the reduction of the original Hamiltonian system when in the presence of symmetries, or
the so-called coisotropic reduction [1, 5, 16, 42]. Another relevant example, in the quantitative
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aspects, is the development of geometric integrators that respect geometric aspects and prove
to be more efficient than the traditional ones (see for instance [44, 50]). It has also had a major
influence on the study of completely integrable systems and Hamilton–Jacobi theory [1, 5, 12,
18]. In addition, the so-called geometric quantization relies on symplectic geometry [39, 54].

Regarding the reduction in the presence of symmetries, the most relevant result is the so-
called Marsden–Weinstein symplectic reduction theorem [43] (a preliminary version can be
found in Meyer [46]) using the momentum mapping, a natural extension of the classical lin-
ear and angular momentum. The reduced manifold is obtained using a regular value of the
momentum mapping and the corresponding isotropy group, and the dynamics is projected to
this reduced manifold, gaining for integration a smaller number of degrees of freedom. This
theorem has been extended to many other contexts: cosymplectic, contact, and more general
settings (see [2, 3, 15, 17, 29, 40, 45, 63] and the references therein). For a recent review on
reduction by symmetries in cosymplectic geometry we refer to [23]. When the reduced space
is not a manifold, we can reduce the algebra of observables [53] (see also [36]). This reduction
recovers the Poisson algebra of the reduced space in Marsden–Weinstein reduction.

Related to the geometric reduction is Noether’s theorem (in fact, this reduction is a gen-
eralisation of it), which states that a symmetry of the system produces a conserved quantity
[6]. The introduction of geometric structures has revealed itself in a plethora of results relating
symmetries and conserved quantities [16].

Furthermore, Lagrangian submanifolds play a crucial role, since it is easy to check that the
image of a Hamiltonian vector field XH in a symplectic manifold (M,ω) can be interpreted
as a Lagrangian submanifold of the symplectic manifold (TM,ωc), where ωc is the complete
or tangent lift of ω to the tangent bundle TM. This result has its equivalent in Lagrangian
mechanics, and has led to the so-called Tulczyjew triples, which elegantly relate the different
Lagrangian submanifolds that appear in Lagrangian and Hamiltonian descriptions of mech-
anics via the Legendre transformation [16, 58, 59]. This interpretation of the dynamics as a
Lagrangian submanifold has been extended to other scenarios, including the Tulczyjew triple
[21, 22, 26–28, 34, 35, 63]. Lagrangian submanifolds are also relevant to develop the so-
called Hamilton–Jacobi theory since they provide the geometric setting for solutions of the
Hamilton–Jacobi problem (see [25] for a recent topical review on the subject). In this sense,
we follow Weinstein’s creed: ‘Everything is a Lagrangian submanifold’ [61].

Moreover, coisotropic submanifolds play a relevant role both in the theory of constraints
and in the theory of quantization. For instance, coisotropic submanifolds are precisely the first
class constraints considered by Dirac in [24] (see also [7]), where he developed the constraint
algorithm for singular Lagrangians in the Hamiltonian setting. The constraint algorithm has
been developed in geometrical terms in [32, 33]. In this approach, the phase space of a singu-
lar system is a presymplectic manifold and, in [31], Gotay showed that every presymplectic
manifold (P,Ω) may be imbedded in a symplectic manifold (M,ω) as a closed coisotropic
submanifold. More precisely, there exists an imbedding j : P→M such that

• j(P) is closed in M;
• j∗ω =Ω;
• TP⊥ ⊆ j∗(TP).

An alternative approach to the usual treatments of singular Lagrangians based on a
Hamiltonian regularization scheme inspired on the coisotropic embedding of presymplectic
systems was developed in [37].

The ideas to develop the coisotropic reduction procedure came from Weinstein [62] and
were also partially inspired by Roels and Weisntein [49] and Marsden and Weinstein [43].
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Coisotropic reduction works when we give a coisotropic submanifold N of a symplectic
manifold (M,ω) and we consider (if it is well defined) the quotient manifold N/(TN)⊥, where
(TN)⊥ is the symplectic complement of TN. Being involutive, this distribution along N defines
a foliation. The corresponding leaf space inherits a reduced symplectic form from the sym-
plectic structure given on M. If in addition we have a Lagrangian submanifold L with clean
intersection with N, then L∩N projects into a Lagrangian submanifold of the quotient (see
[1, 61]). Coisotropic reduction can be also combined with symplectic reduction to develop a
reduction procedure for the Hamilton–Jacobi equation in presence of symmetries (see [18]).

Coisotropic reduction has been extended to the field of contact manifolds (with the interest
of being in a dissipative context) [15, 57], but it has not been studied in sufficient detail in
the case of cosymplectic manifolds nor in that of co-contact manifolds, the latter the natural
settings to study time-dependent Hamiltonian contact systems [13, 19].

The objectives of this paper are twofold. On the one hand, to develop in detail the coisotropic
reduction in the case of cosymplectic manifolds and those of co-contact, covering a gap in the
literature. On the other hand, to present a survey that brings together in one place the different
cases that appear in the study of Hamiltonian systems in classical mechanics.

The paper is structured as follows. Sections 2 and 3 are devoted to the main ingredients con-
cerning symplectic Hamiltonian systems and the classical coisotropic reduction procedure. In
order to go to the cosymplectic setting, we recall some general notions in Poisson structures
(section 4) and then we consider the case of coisotropic reduction in the cosymplectic setting
in section 5 (remember that this is the scenario to develop time dependent Hamiltonian sys-
tems). Contact manifolds require a more general notion than Poisson structures; indeed, they
are examples of Jacobi structures, so that we give some fundamental notions in section 6. The
coisotropic reduction scheme developed in contact manifolds is the subject of section 7, which
is very different to the cosymplectic case since we are in presence of dissipative systems. We
emphasize these differences in section 8, where we study the corresponding Lagrangian set-
tings. To combine dissipative systems with Hamiltonians depending also on time, we consider
cocontact manifolds in section 9, and develop there the corresponding coisotropic reduction
procedure. Finally, we discuss a recent generalization of contact and cosymplectic systems
called stable Hamiltonian systems in section 10.

2. Symplectic vector spaces

We refer to [1, 5, 16, 30, 42, 60] for the main definitions and results.

Definition 2.1 (Symplectic vector space). A symplectic vector space is a pair (V,ω) where
V is a finite dimensional vector space and ω is a non-degenerate 2-form, called the symplectic
form. Here, non-degeneracy means that the map

[ω : V→ V∗; v 7→ ivω

is an isomorphism.

For every non-degenerate 2-form on V there exist a basis (xi,yi) whith i taking values from
1 to n such that, making use of the summation convention, ω = xi ∧ yi, where (xi,yi) is the
dual basis. This implies that a symplectic vector space is necessarily of even dimension 2n.

Definition 2.2 (ω-orthogonal). Let W⊆ V be a subspace of V. We define its ω-orthogonal
complement as

W⊥ω := {v ∈ V | ω (v,w) = 0, ∀w ∈W} .
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Note that W⊥ω = Ker(i∗[ω) where i :W ↪→ V is the natural inclusion. Using the non-
degeneracy of ω, this implies that dimW⊥ω = dimV− dimW, a result which will be useful
throughout this paper.

The antisymmetry of ω gives rise to a wide variety of situations. In particular, we say that
W⊆ V is:

i) Isotropic if W⊆W⊥ω (if W is isotropic, necessarily dimW⩽ n);
ii) Coisotropic if W⊥ω ⊆W (if W is coisotropic, necessarily dimW⩾ n);
iii) Lagrangian ifW is isotropic and has an isotropic complement (ifW is Lagrangian, neces-

sarily dimW= n);
iv) Symplectic if V=W⊕W⊥ω .

A subspace W is Lagrangian if and only if W=W⊥ω . This implies that Lagrangian sub-
spaces are the isotropic subspaces of maximal dimension and the coisotropic subspaces of
minimal dimension.

It can be easily checked that the symplectic complement has the following properties:

i) (W1 ∩W2)
⊥ω =W⊥ω

1 +W⊥ω

2 ;

ii) (W1 +W2)
⊥ω =W⊥ω

1 ∩W⊥ω

2 ;
iii) (W⊥ω )⊥ω =W.

3. Coisotropic reduction in symplectic geometry

Definition 3.1 (Symplectic manifold). A symplectic manifold is pair (M,ω) where M is a
manifold and ω is a closed 2-form such that (TqM,ωq) is a symplectic vector space, for every
q ∈M. As in the linear case, for the existence of such a form,M needs to have even dimension
2n.

Every symplectic manifold is locally isomorphic, that is, there exists a set of canonical
coordinates around each point:

Theorem 3.1 (Darboux theorem). Let (M,ω) be a symplectic manifold and q ∈M. There exist
a coordinate system (qi,pi) around q such that ω = dqi ∧ dpi. These coordinates are called
Darboux coordinates.

This non-degenerate form induces a bundle isomorphism between the tangent and cotangent
bundles of M point-wise, namely

[ω : TM→ T∗M; vq 7→ [ω (vq) = ivqω.

Definition 3.2 (Hamiltonian vector field). Given H ∈ C∞(M), we define the Hamiltonian
vector field of H as

XH := ]ω (dH) ,

where ]ω = [−1
ω .We say that a vector fieldX isHamiltonian ifX= XH for some functionH and

say that X is locally Hamiltonian if X= XH for some local function defined in a neighborhood
of every point of the manifold.

Remark 3.1. Notice that a vector field is locally Hamiltonian if and only if [ω(X) is closed,
and Hamiltonian if and only if [ω(X) is exact.
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Locally, Hamiltonian vector fields have the expression

XH =
∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi
.

Then, the integral curves of the Hamiltonian vector field XH,(qi(t),pi(t)), satisfy the local
differential equations

dqi

dt
=
∂H
∂pi

,

dpi
dt

=−∂H
∂qi

,

which are the Hamilton’s equations of motion.
The definitions of the different cases of subspaces given in the linear case can be extended

point-wise to submanifolds N ↪→M. Consequently, we say that N ↪→M is:

i) Isotropic if TqN⊆ TqM is for every q ∈ N;
ii) Coisotropic if TqN⊆ TqM is for every q ∈ N;
iii) Lagrangian if N is isotropic and there is a isotropic subbundle (where we understand iso-

tropic point-wise) E⊆ TM|N such that TM= TN⊕E (here ⊕ denotes the Whitney sum).
This is exactly the point-wise definition of a Lagrangian subspace asking for the coiso-
tropic complement to vary smoothly;

iv) Symplectic if TqN⊆ TqM is for every q ∈ N.

These definitions extend naturally to distributions.
Just like in the linear case, a submanifold N ↪→M is Lagrangian if and only if it is isotropic

(or coisotropic) and has maximal (or minimal) dimension. This is a useful characterization that
we will use several times in the rest of the paper.

Lemma 3.1. Let i : L→M be a submanifold of dimension n. Then, L is a Lagrangian subman-
ifold of (M,ω) if and only if i∗ω = 0.

Proof. It is trivial, since Lagrangian submanifolds are the isotropic submanifolds of maximal
dimension, say n.

3.1. Hamiltonian vector fields as Lagrangian submanifolds

Definition 3.3. Let (M,ω) be a symplectic manifold. Define the tangent symplectic structure
on TM as ω0 =−dλ0 where λ0 = [∗ωλM, and λM is the Liouville 1-form on the cotangent
bundle.

Recall that λM is defined as follows:

λM (αx)(Xαx) = αx (dαxπM ·Xαx)

where Xαz ∈ Tαx(T
∗M), αx ∈ T∗xM, and πM : T∗M−→M is the canonical projection. The

Liouville 1-form can be also defined as the unique 1-form λM on T∗M such that, for every
1-form α :M→ T∗M,

α∗ (λM) = α.

In coordinates (qi,pi, q̇i, ṗi) the tangent symplectic structure is

ω0 =−dqi ∧ dṗi − dq̇i ∧ dpi.

6
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Proposition 3.1. Let X :M→ TM be a vector field. Then

X∗ (λ0) = [ω (X) .

Proof. This is a straight-forward verification. Let v ∈ TqM, then we have

〈X∗λ0,v〉= 〈λ0,dqX · v〉= 〈λM,dX(q)[ω · dqX · v〉
= 〈[ω (X)∗ (λM) ,v〉= 〈[ω (X) ,v〉.

Proposition 3.2. Let X :M→ TM be a vector field. Then X is locally Hamiltonian if and only
if X(M) is a Lagrangian submanifold of (TM,ω0).

Proof. We only check that X(M) is isotropic using lemma 3.1, since dimX(M) = dimM=
1
2 dimTM. In fact:

X∗ω0 =−X∗ (dθ0) =−d(X∗θ0) =−d([ω (X)) ,

which gives the characterization.

We can also check this last proposition easily in coordinates. Indeed, let

X= Xi
∂

∂qi
+Yi

∂

∂pi
.

We have

−X∗ω0 =
∂Yi
∂qj

dqi ∧ dqj+

(
∂Yi
∂pj

+
∂Xj

∂qi

)
dqi ∧ dpj+

∂Xi

∂pj
dpj ∧ dpi,

and thus, X defines a Lagrangian submanifold if and only if

∂Yi
∂qj

−
∂Yj
∂qi

= 0,

∂Yi
∂pj

+
∂Xj

∂qi
= 0,

∂Xi

∂pj
− ∂Xj

∂pi
= 0.

Taking (
G1, . . . ,Gn,Gn+1, . . . ,G2n

)
:=

(
Xi,−Yi

)
and (

x1, . . . ,xn,xn+1, . . . ,x2n
)
:=

(
qi,pi

)
,

these conditions become

∂Gi

∂xj
=
∂Gj

∂xi
.

This implies Gi =
∂H
∂xi

, for some local function H. It is clear that locally, we have X= XH.
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3.2. Coisotropic reduction

Now, given a coisotropic submanifold N ↪→M, we define the distribution (TN)⊥ω on N as the
subbundle of TM|N consisting of all ω-orthogonal spaces (TqN)⊥ω . Note that this distribution
is regular and its rank is dimM− dimN.

Proposition 3.3. Let (M,ω) be a symplectic manifold and N ↪→M be a coisotropic submani-
fold. The distribution q 7→ (TqN)⊥ω is involutive.

Proof. Let X,Y be vector fields along N with values in TN⊥ω and Z be any other vector field
tangent to N. Since ω is closed we have

0=(dω)(X,Y,Z) = X(ω (Y,Z))−Y(ω (X,Z))+ Zω (X,Y)

−ω ([X,Y] ,Z)+ω ([X,Z] ,Y)−ω ([Y,Z] ,X) =−ω ([X,Y] ,Z) ,

since X,Y belong to the orthogonal complement of TN. We conclude that ω([X,Y],Z) = 0 for
every field Z tangent to N, that is, [X,Y] ∈ (TN)⊥ω .

Since the distribution is involutive and regular, the Frobenius’ Theorem guarantees the
existence of a maximal regular foliation F of N, that is, a decomposition of N into maximal
submanifolds tangent to the distribution. In what follows, we suppose that N/F (the space of
all leaves) admits a manifold structure so that the projection

π : N→ N/F
is a submersion. The main result is the Weinstein reduction theorem [62]:

Theorem 3.2 (Coisotropic reduction in the symplectic setting). Let (M,ω) be a symplectic
manifold and N ↪→M be a coisotropic submanifold. If N/F (the spaces of all leaves under the
distribution q 7→ (TqN)⊥ω ) admits a manifold structure such that N

π−→ N/F is a submersion,
there exist an unique 2-form ωN on N/F that defines a symplectic manifold structure such that,

if N
i−→M is the natural inclusion, then i∗ω = π ∗ωN. The following diagram summarizes the

situation:

Proof. Uniqueness is guaranteed from the imposed relation since it forces us to define

(ωN)[q] ([u] , [v]) := ω (u,v) ,

where [u] := Tπ(q) · u. We only need to check that this is a well-defined closed form and that
it is non-degenerate.

We begin showing that our definition does not depend on the representative of the vector
[u]. For this, it is sufficient to observe that (ωN)[q]([u], [v]) = 0 whenever u is a vector in the
distribution.

Furthermore,

LXω = diXω+ iXdω = 0

8
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for every vector field X in N with values in (TN⊥ω ), and this implies the independence of the
point (for every two points in the same leaf of the foliation can be joined by a finite union of
flows of such fields).

It is clearly non-degenerate and it is closed, since dπ∗ωN = i∗dω = 0 and π is a submersion.

3.3. Projection of Lagrangian submanifolds

Definition 3.4 (Clean intersection). We say that two submanifolds L,N ↪→M have clean
intersection if L∩N ↪→M is again a submanifold and Tq(L∩N) = TqL∩TqN, for every
q ∈ L∩N.

Proposition 3.4. Let L ↪→M be a Lagrangian submanifold and N ↪→M a coisotropic sub-
manifold. If they have clean intersection and LN := π(L∩N) is a submanifold of N/F , LN is
Lagrangian.

Proof. It is sufficient to see that is isotropic and that it has maximal dimension in N/F . It
is isotropic since [u] ∈ Tq(LN) implies ωN([u], [v]) = ω(u,v) = 0, for every [v] ∈ Tq(LN). Now,
since Kerdqπ = (TqN)⊥ω , the kernel-range formula yields

dimLN = dim(L∩N)− dim
(
TqL∩ (TqN)

⊥ω

)
. (1)

Furthermore,

dim(L∩N)+ dim
(
TqL+(TqN)

⊥ω

)
= dimM, (2)

because L is Lagrangian and N coisotropic. Substituting (2) in (1) we obtain

dimLN = dimM− dim
(
TqL+(TqN)

⊥ω

)
− dim

(
TqL∩ (TqN)

⊥ω

)
= dimM− dimL− dim(TqN)

⊥ω = dimM− dimL− (dimM− dimN)

= dimN− dimL= dimN− 1
2
dim

which is exactly 1
2 dimN/F , as a direct calculation shows.

3.4. An example

As an example of coisotropic reduction, let us take

M := R2(n+1),

and

N := S2n+1.

Since it has codimension 1, it defines a coisotropic submanifold if we endowM with the natural
symplectic form ω := dqi ∧ dpi. It is easy to check that (TN)⊥ω is generated by∑

i

(
pi

∂

∂qi
− qi

∂

∂pi

)
,

9
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where (qi,pi) are canonical coordinates in R2(n+1). Therefore, the leaves of the corresponding
foliation are precisely the orbits of the previous vector field in S2n+1. Making the identification

R2(n+1) = Cn+1,

two points x,y ∈ S2n+1 are in the same orbit if and only if there exist some α ∈ C (|α|= 1)
such that

αx= y.

This implies that

S2n+1/F

is the complex projective space of complex dimension n, PnC. Therefore, we conclude
that through coisotropic reduction we can define a natural symplectic structure on PnC, for
every n.

The above example is taken from exercise 5.3B in [1].

4. Poisson structures

A symplectic structure (M,ω) induces a Lie algebra structure on the ring of functions C∞(M).

Definition 4.1 (Poisson bracket). Let (M,ω) be a symplectic manifold and f,g ∈ C∞(M). We
define the Poisson bracket of f,g as the function

{f,g} := ω (Xf,Xg) .

It is easily checked that in Darboux coordinates the Poisson bracket is

{f,g}= ∂f
∂qi

∂g
∂pi

− ∂f
∂pi

∂g
∂qi

.

Proposition 4.1. The Poisson bracket satifies the following properties:

i) It is bilinear with respect to R;
ii) {f,g · h}= g · {f,h}+ {f,g} · h (the Leibniz rule);
iii) {f,{g,h}}+ {h,{f,g}}+ {g,{h, f}}= 0 (the Jacobi identity).

Taking into consideration the previous definition, we can generalize the notion of sym-
plectic manifolds as follows:

Definition 4.2 (Poisson manifold). A Poisson manifold is a pair (P,{·, ·})where P is a mani-
fold and {·, ·} is an antisymmetric bracket in the ring of functions C∞(P) satisfying the Leibniz
rule and the Jacobi identity.

Definition 4.3 (Hamiltonian vector field, Characteristic distribution). Given H ∈ C∞(M),
the Leibniz rule implies that {H, ·} defines a derivation on C∞(M) an thus is associated to a
unique vector field XH, which will be called theHamiltonian vector field ofH. The collection
of all Hamiltonian vector fields generates the characteristic distribution, namely

Sq := 〈v= XH (q) for all H ∈ C∞ (M)〉.

The definition of Hamiltonian vector field implies that {f,g} only depends on the values of
df,dg and thus we can define a bivector field

Λ(α,β) := {f,g}

10
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where df = α,dg= β. We have {f,g}= Λ(df,dg). Λ also satisfies the partial differential
equation [Λ,Λ] = 0, where [·, ·] is the Schouten–Nijenhuis bracket [60]. This last property is
actually equivalent to the Jacobi identity, that is, given a bivector field Λ, {f,g} := Λ(df,dg)
defines a Poisson structure if and only if [Λ,Λ] = 0.

Definition 4.4. Let (P,{·, ·}) be a Poisson manifold. Then we define

]Λ : T∗P→ TP; αq 7→ iαqΛ.

Notice that Im]Λ = S, the characteristic distribution.

Remark 4.1. In the case of symplectic manifolds ]ω = ]Λ, and the characteristic distribution
is the whole tangent bundle; however, in the general setting ]Λ need not be a bundle isomorph-
ism. Actually, if ]Λ is a bundle isomorphism, it arises form a symplectic structure defined as
ω(v,w) := Λ(]−1

Λ (v), ]−1
Λ (w)) [16].

This type of distributions is in general not of constant rank, so we cannot directly apply the
Frobenius’ theorem. But there is an extension of the result, due to Stefan [55] and Sussmann
[56] (independently) that works for generalised distributions, locally generated by vector fields
that leave the distribution invariant. This is the situation for characteristic distributions in the
case of Poisson manifolds (see [42]).

So, the characteristic distribution is involutive and each leaf S of the foliation admits a
symplectic structure defining for f,g ∈ C∞(S) and q ∈ S,

{f,g}(q) :=
{̃
f, g̃

}
(q)

for arbitrary extensions f̃, g̃ ∈ C∞(P) of f,g respectively. It can be easily checked that this
definition does not depend on the chosen functions and that it defines a non-degenerate Poisson
structure and thus, S is a symplectic manifold [60]. The symplectic form is given by

ωS (Xf,Xg) = {f,g} ,

where f,g ∈ C∞(S).

Definition 4.5 (Λ-orthogonal). Let∆q ⊆ TqP be a subspace on a Poisson manifold (P,{·, ·}).
We define theΛ-orthogonal complement∆⊥Λ

q = ]Λ(∆
0
q) where∆

0
q is the annihilator of∆q,

that is, ∆0
q := {α ∈ T∗qP | α= 0 in∆q}.

Just as in the symplectic scenario, we say that a subspace ∆q ⊆ TqP is

i) Isotropic if∆q ⊆∆⊥Λ
q for every q ∈ P;

ii) Coisotropic if ∆⊥Λ
q ⊆∆q for every q ∈ P;

iii) Lagrangian if ∆q =∆⊥Λ
q ∩Sq for every q ∈ P. Notice that this is equivalent to ∆q ∩Sq

being Lagrangian in each symplectic vector space Sq.

The Λ-orthogonal complement satisfies the following properties:

i) (W1 ∩W2)
⊥Λ =W⊥Λ

1 +W⊥Λ

2 ;

ii) (W1 +W2)
⊥Λ ⊆W⊥Λ

1 ∩W⊥Λ

2 .

Remark 4.2. For symplectic manifolds, the above definitions coincide with the ones previ-
ously given.

11
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5. Coisotropic reduction in cosymplectic geometry

Cosymplectic structures are relevant precisely because they are the natural arena to develop
time-dependent Lagrangian and Hamiltonian mechanics [16].

Definition 5.1 (Cosymplectic manifold). A cosymplectic manifold is a triple (M,Ω,θ)
where M is a (2n+ 1)-manifold, θ is a closed 1-form and Ω is a closed 2-form such that
θ∧Ωn 6= 0.

Similar to the symplectic setting, there exist canonical coordinates, which will be called
Darboux coordinates (qi,pi, t) such that Ω= dqi ∧ dpi and θ = dt. The existence of such
coordinate charts is proven in [30].

There are two natural distributions defined on M:

i) The horizontal distributionH := Kerθ;
ii) The vertical distribution V := KerΩ.

These distributions induce the following types of tangent vectors in each tangent space. A
vector v ∈ TqM will be called:

i) Horizontal if v ∈Hq;
ii) Vertical if v ∈ Vq.

In Darboux coordinates, these distributions are locally generated as follows:

H=

〈
∂

∂qi
,
∂

∂pi

〉
; V =

〈
∂

∂t

〉
.

Just as before, we can define a bundle isomorphism between the tangent and cotangent
bundles:

[θ,Ω : TM→ T∗M; vq 7→ [θ,Ω (vq) = ivqΩ+ θ (vq) · θ.
Its inverse is denoted by ]θ,Ω.

The vector field defined as R := ]θ,Ω(θ) is called the Reeb vector field. The Reeb vector
field is locally given by

R=
∂

∂t
.

Let H be a differentiable function on M. We define the following vector fields

i) The gradient vector field gradH := ]θ,Ω(dH);
ii) The Hamiltonian vector field XH := gradH−R(H)R;
iii) The evolution vector field EH := XH+R.

These vector fields have the local expressions:

gradH=
∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi
+
∂H
∂t

∂

∂t
,

XH =
∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi
,

EH =
∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi
+
∂

∂t
.

12
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Notice that an integral curve (qi(λ),pi(λ), t(λ) of the evolution vector field satisfies the fol-
lowing differential equations

dqi

dλ
=
∂H
∂pi

,

dpi
dλ

=−∂H
∂qi

,

dt
dλ

= 1,

which immediately give time-dependent Hamilton’s equations

dqi

dt
=
∂H
∂pi

,

dpi
dt

=−∂H
∂qi

since we have t= λ+ const.
Notice that the horizontal distribution H is the distribution generated by all Hamiltonian

vector fields. Just as in the symplectic case, we can define a Poisson bracket:

Definition 5.2 (Poisson bracket). Let {·, ·} be the bracket in the ring C∞(M) given by

{f,g} := Ω(Xf,Xg) .

We can easily check that this is indeed a Poisson structure by observing that in coordinates
it is given by

{f,g}= ∂f
∂qi

∂g
∂pi

− ∂f
∂pi

∂g
∂qi

.

Thus, the coordinate expression of the Poisson tensor is

Λ =
∂

∂qi
∧ ∂

∂pi
.

So, the Hamiltonian vector fields coincide with the ones provided by this induced Poisson
structure, following the notions and results given in section 4. In particular, given ∆q ⊆ TqM,
we have

∆⊥Λ
q = ]Λ

(
∆0
q

)
.

Note that Ker]Λ = 〈θ〉 and that Im]Λ =H, that is, H is the characteristic distribution of
the Poisson structure induced by (θ,Ω). This implies the following result:

Proposition 5.1. i : L→M is a Lagrangian submanifold if and only if

TqL
⊥Λ = TqL∩Hq

for every q ∈ L.

Proof. It follows from the definition of Lagrangian submanifold (section 4) and the fact that
H is the characteristic distribution on M.

It is also easy to see that

Λ(α,β) = Ω(]θ,Ω (α) , ]θ,Ω (β))

observing that we have Ω(Xf,Xg) = Ω(grad f,gradg).

13
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5.1. Gradient, Hamiltonian and evolution vector fields as Lagrangian submanifolds

Definition 5.3. Given a cosymplectic manifold (M,Ω,θ), we define the symplectic structure
on TM as Ω0 :=−dλ0, where λ0 = [∗θ,ΩλM, λM being the Liouville 1-form in the cotangent
bundle T∗M.

There is another expression of Ω0, namely

Ω0 =−Ωc− θc ∧ θv

as one can verify [11]. Here,αv,αc denote the complete and vertical lifts of a formα onM to its
tangent bundle TM [16]. This implies that in the induced coordinates in TM, (qi,pi, t, q̇i, ṗi, ṫ),

Ω0 =−dqi ∧ dṗi − dq̇i ∧ dpi − dṫ∧ dt.

Proposition 5.2. Let (M,Ω,θ) be a cosymplectic manifold and X :M→ TM a vector field.
Then X(M) is a Lagrangian submanifold of (TM,Ω0) if and only if X is locally a gradient
vector field.

Proof. It is easily checked that X∗λ0 = [θ,Ω(X) (just like in proposition 3.1) and then, X(M)
is Lagrangian if and only if

0= X∗Ω0 =−X∗dλ0 =−d[θ,Ω (X) ,

that is, X is locally a gradient vector field.

We can also check this in coordinates. Indeed, let

X= Xi
∂

∂qi
+Yi

∂

∂pi
+Z

∂

∂t

be a vector field onM. X :M ↪→ TM defines a Lagrangian submanifold if and only if X∗Ω0 = 0.
An easy calculation gives

−X∗Ω0 =

(
∂Xi

∂qj
+
∂Yj
∂pi

)
dqj ∧ dpi +

(
∂Xi

∂t
− ∂Z
∂pi

)
dt∧ dpi +

(
∂Yi
∂t

+
∂Z
∂qi

)
dqi ∧ dt

∂Xi

∂pj
dpj ∧ dpi +

∂Yi
∂qj

dqj ∧ dqi.

Therefore, X defines a Lagrangian submanifold of (TM,Ω0) if and only if

∂Xi

∂qj
+
∂Yj
∂pi

= 0, (3)

∂Xi

∂t
− ∂Z
∂pi

= 0, (4)

∂Yi
∂t

+
∂Z
∂qi

= 0, (5)

∂Xi

∂pj
− ∂Xj

∂pi
= 0, (6)

∂Yi
∂qj

−
∂Yj
∂qi

= 0. (7)

14
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The equations above can be summarized by taking(
G1, . . . ,Gn,Gn+1, . . . ,G2n,G2n+1

)
:=

(
Xi,−Yi,Z

)
,(

x1, . . . ,xn,xn+1, . . . ,x2n,x2n+1
)
:=

(
qi,pi, t

)
,

since they translate to

∂Gi

∂xj
=
∂Gj

∂xi
.

We conclude that Gi =
∂H
∂xi

, for some local function H, that is, locally, X= gradH.

In general, the Hamiltonian and evolution vector field do not define Lagrangian subman-
ifolds in (TM,Ω0). However, modifying the form we can achieve this. First, let us study the
Hamiltonian vector field XH. We have

X∗
HΩ0 = (gradH−R(H)R)

∗
Ω0 =−d(R(H)θ) =−d(R(H))∧ θ.

The form defined as

ΩH := Ω0 +(dR(H)∧ θ)v

is a symplectic form and has the local expression

ΩH =−dq∧ dṗi − dq̇i ∧ dpi − dṫ∧ dt+ d

(
∂H
∂t

)
∧ dt.

Also,

X∗
HΩH =−dR(H)∧ θ+ d(R(H))∧ θ = 0.

We have proved that XH defines a Lagrangian submanifold of (TM,ΩH). Furthermore, since

R∗Ω0 = 0,

it follows that the evolution vector field EH also defines a Lagrangian submanifold of (TM,ΩH).
This also gives a way of interpreting both vector fields as Lagrangian submanifolds of a the

cosymplectic submanifold (TM×R,ΩH,ds), taking the coordinate in R to be constant.

5.2. Coisotropic reduction

We can interpret the orthogonal complement defined by the Poisson structure using the cosym-
plectic structure. We note that Ω|H defined as Ω restricted to the distribution H induces a
symplectic vector space in each Hq and thus we have a symplectic vector bunde H→M. If
∆q ⊆Hq, we have the Ω|H-orthogonal complement

(∆q)
⊥Ω|H = {v ∈H | Ω(v,w) = 0, ∀w ∈∆q} .

Proposition 5.3. Let ∆q ⊆ TqM. Then ∆⊥Λ
q = (∆q ∩H)⊥Ω|H .

Proof. Let v ∈∆⊥Λ
q , that is, v= ]Λ(α)with α ∈∆0

q. This implies that v is horizontal. We only
need to check that Ω(v,w) = 0 for every w ∈∆q ∩Hq. Indeed, since θ(w) = 0,

Ω(]Λα,w) =−Ω(w, ]Λα)− θ (w)θ (]Λα) =−([θ,Ωw)(]Λα) =−Λ(α,[θ,Ωw)

=−Ω(]θ,Ωα,w) =−Ω(]θ,Ωα,w)− θ (]θ,Ωα)θ (w) =−α(w) = 0.

Now we compare dimensions. We distinguish two cases, if θ ∈∆0
q, we have

dim∆⊥Λ
q = dim∆0

q− 1= 2n− dim∆q

15
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which is exactly dim(∆q ∩Hq)
⊥Ω|H , for ∆q ⊆Hq and (Hq,Ω|H) is symplectic. Now, if θ 6∈

∆0
q, then

dim∆⊥Λ
q = 2n+ 1− dim∆q

and, since ∆q 6⊆ Hq, we have dim(∆q ∩Hq) = dim∆q− 1 which implies that dim(∆q ∩
Hq)

⊥Ω|H = 2n+ 1− dim∆.

This last proposition clarifies the situation. The Λ-orthogonal of a subspace ∆ is just the
symplectic orthogonal of the intersection with the symplectic leaf. This means that coisotropic
reduction in cosymplectic geometry will be performed in each leaf of the characteristic distri-
bution H. Also, because the Λ-orthogonal complement is just the symplectic complement of
the intersection withH, we have the following properties:

i) (∆1 ∩∆2)
⊥Λ =∆⊥Λ

1 +∆⊥Λ

2 .

ii) (∆1 +∆2)
⊥Λ =∆⊥Λ

1 ∩∆⊥Λ

2 .
iii) (∆⊥Λ)⊥Λ =∆∩H.

It will also be important to distinguish submanifolds N ↪→M acording to the position relat-
ive to the distributionsH,V .

Definition 5.4 (Horizontal, non-horizontal and vertical submanifolds). Let i : N ↪→M be a
submanifold. N will be called a:

i) Horizontal submanifold if TqN⊆Hq for every q ∈ N;
ii) Non-horizontal submanifold if TqN 6⊆ Hq for every q ∈ N;
iii) Vertical submanifold if the Reeb vector field is tangent toN, that is,R(q) ∈ TqN for every

q ∈ N.

Remark 5.1. Note that if N ↪→M is a vertical submanifold, then N is non-horizontal.

Lagrangian submanifolds are characterized as follows:

Lemma 5.1. Let L ↪→M be a Lagrangian submanifold and q ∈ L. Then

i) If TqL⊆Hq, dimTqL⊥Λ = dimM− dimL− 1.
ii) If TqL 6⊆ Hq, dimTqL⊥Λ = dimM− dimL.

and, in either case, dimTqL⊥Λ = n, where dimM= 2n+ 1.

Proof.

i) Since θ ∈ TqL0 we have

dimTqL
⊥Λ = dim]Λ

(
TqL

0
)
= dimM− dimL− dim(Ker]Λ ∩TqL) = dimM− dimL− 1.

ii) It follows from the previous calculation using that θ 6∈ TqL0 because

dim(Ker]Λ ∩TqL) = 0.

The proof of the equality dimTqL⊥Λ = n is straightforward using that TqL∩Hq is a
Lagrangian subspace of (Hq,Ω|H).

16
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Lemma 5.1 guarantees that either dimL= n, in which case L is horizontal, or dimL= n+ 1,
in which case L is non-horizontal. We have the following useful characterization of Lagrangian
submanifolds:

Lemma 5.2. Let L ↪→M be a submanifold. We have

i) If dimL= n, then L is Lagrangian if and only if i∗θ = 0, i∗Ω= 0.
ii) If L is non-horizontal and dimL= n+ 1, then L is Lagrangian if and only if i∗Ω= 0.

Proof. Both assertions are proved by a comparison of dimensions.

Proposition 5.4. Let i : N ↪→M be a coisotropic submanifold. Then the distribution (TN)⊥Λ

is involutive.

Proof. We start proving that H is an involutive distribution. Let X,Y be vector fields tangent
to H. Since θ is closed we have

0= (dθ)(X,Y) = X(θ (Y))−Y(θ (X))− θ ([X,Y]) =−θ ([X,Y]) ,

that is, [X,Y] is tangent to H.
Denote Ω0 := i∗Ω. Let X,Y be vector fields in N tangent to (TN)⊥Λ . Using proposition 5.3,

[X,Y] ∈ (TN)⊥Λ if and only if [X,Y] ∈ (TN∩H)⊥Ω|H . In order to see this, we take an arbitrary
vector field Z on N tangent to H and check that Ω0([X,Y],Z) = 0. Because Ω is closed, we
have

0= i∗ (dΩ) = (dΩ0)(X,Y,Z) = X(Ω0 (Y,Z))−Y(Ω0 (X,Z))+ Z(Ω0 (X,Y))

−Ω0 ([X,Y] ,Z)+Ω0 ([X,Z] ,Y)−Ω0 ([Y,Z] ,X) =−Ω0 ([X,Y] ,Z)

where we have used that X,Y,Z, [Y,Z], [X,Z] are horizontal (since H is involutive) and that
X,Y ∈ (TN∩H)⊥Ω|H .

5.3. Vertical coisotropic reduction

We shall now study coisotropic reduction of a vertical submanifold N ↪→M. Let q ∈ N. We
have dim(TqN)0 = dimM− dimN. Since N is vertical, θ 6∈ (TqN)0 and we have

dim(TqN)
⊥Λ = dim]Λ (TqN)

0
= dimM− dimN− dim

(
Ker]Λ ∩ (TqN)

0
)
= dimM− dimN.

In particular, (TN)⊥Λ is a regular distribution.

Theorem 5.1 (Vertical coisotropic reduction in the cosymplectic setting). Let (M,Ω,θ) be
a cosymplectic manifold and i : N ↪→M be an coisotropic vertical submanifold. Denote by F
the maximal foliation of the involutive regular distribution (TN)⊥Λ . If the space of all leaves
N/F admits a manifold structure such that the projection π : N→ N/F is a submersion, then
there exist unique θN, ωN such that

i∗ω = π∗ωN,

i∗θ = π∗θN,

17



J. Phys. A: Math. Theor. 57 (2024) 163001 Topical Review

and they define a cosymplectic structre on N/F . The following diagram summarizes the
situation:

Proof. Uniqueness is clear from the imposed relation. Denote Ω0 := i∗Ω, θ0 := i∗θ. We only
need to verify that the following forms are closed, well defined and define a cosymplectic
structure:

ΩN ([u] , [v]) := Ω0 (u,v) ,

θN ([u]) := θ0 (u) ,

where [u] := Tπ(q) · u ∈ T[q]N/F . If they were well defined, it is clear that they are smooth
and closed since π∗dθN = dθ0 = 0, π∗ΩN = dΩ0 = 0 and π is a submersion.

Let us first check that these definitions do not depend on the chosen representatives of
the vectors. It suffices to observe that for vectors in the distribution, say v ∈ (TqN)⊥Λ , we
have ivΩ0 = 0 and ivθ0 = 0. This easily follows from proposition 5.3 using that the horizontal
proyection of every vector u ∈ TqN is tangent to N (here we use the condition R(q) ∈ TqN).
To see the independence of the point in the leaf chosen, it is enough to observe that

LXΩ0 = 0; LXθ0 = 0

for every vector field on N tangent to the distribution (TqN)⊥Λ (since every two points in the
same leaf of the foliation can be joined by a finite union of flows of such fields). Indeed, we
have

LXΩ0 = iXdΩ0 + diXΩ0 = 0,

LXθ0 = iXdθ0 + diXθ0 = 0.

Nowwe check that they define a cosymplectic structure. Assuming k= dimN and 2n+ 1=
dimM, from the remark above we have

dimN/F = dimN− rank (TN)⊥Λ = 2k− 2n− 1= 2(k− n− 1)+ 1

and hence, (N/F ,ΩN,θN) is a cosymplectic manifold if and only if

θN ∧Ωk−n−1
N 6= 0,

which is equivalent to θ0 ∧Ωk−n−1
0 6= 0, because π is a submersion. For every point q ∈ N, TqN

can be decomposed in

TqN= TqNH ⊕V

where TqNH = (TqN)∩Hq. It is easy to see that (TqN)H is a coisotropic subspace
of (Hq,Ω|H). This implies (using symplectic reduction) that there are dim(TqN)H −

18
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dim(TqN)
⊥Ω̃

H = k− 1− (2n+ 1− k) = 2k− 2n− 2 horizontal vectors, say u1, . . . ,u2k−2n−2

such that Ωk−n−1
0 (u1, . . . ,u2k−2n−2) 6= 0. Taking the last vector to be R(q), it is clear that(

θ0 ∧Ωk−n−1
0

)
(R(q) ,u1, . . . ,u2k−2n−2) 6= 0.

5.3.1. Projection of Lagrangian submanifolds. Now we will prove that Lagrangian subman-
ifolds L ↪→M project to Lagrangian submanifolds in N/F .

Proposition 5.5 (Projection of horizontal Lagrangian submanifolds is Lagrangian).
Under the hypotheses of theorem 5.1, let L ↪→M be an horizontal Lagrangian submanifold
such that L and N have clean intersection. If LN := π(L∩N) is a submanifold of N/F , then
LN is Lagrangian.

Proof. LetHN be the horizontal distribution in N/F . It is clear that LN is horizontal, because
T[q]LN = Tπ(q)(TqL∩TqN). Using proposition 5.3 we have

T[q]L
⊥ΛN
N =

(
T[q]LN ∩HN

)⊥ΩN|HN = T[q]L
⊥ΩN|HN
N .

We will check that

T[q]LN ⊆ T[q]L
⊥ΛN
N

and prove that dimLN = dimN− n− 1, which with lemma 5.2 together with the calculation of
the dimension of N/F done in theorem 5.1, yields the result.

Let [v], [w] ∈ T[q]LN. Then

ΩN ([v] , [w]) = Ω(v,w) = 0,

since L is Lagrangian. Because [w] is arbitrary, this last calculation implies that [v] ∈
T[q]L

⊥ΩN|HN
N ⊆ T[q]L

⊥ΛN
N . Now,

dimLN = dim(L∩N)− dim
(
TqL∩ (TqN)

⊥Λ

)
. (8)

Furthermore, since L is Lagrangian and horizontal, (TqL∩ (TqN)⊥Λ)⊥Λ = TqL∩Hq+
(TqN⊥Λ)⊥Λ = TqL+(TqN⊥Λ)⊥Λ and thus (using that TqL∩ (TqN⊥Λ)⊥Λ is necessarily
horizontal),

dim
(
TqL∩ (TqN)

⊥Λ

)
= dimM− dim

(
TqL+

(
TqN

⊥Λ
)⊥Λ

)
− 1.

Since dim(TqL∩Hq+(TqN⊥Λ)⊥Λ) = dim(TqL∩Hq+TqN)− 1 (which comes from the fact
that dim(TqN⊥Λ)⊥Λ = dimTqN− 1) we have

dim
(
TqL∩Hq+TqN

⊥Λ
)
= dimM− dim

(
TqL∩TqN⊥Λ

)
. (9)

Substituting (9) in (8) and using dimL= n, we conclude

dimLN = dim(L∩N)− (dimM− dim(TqL+TqN))

= dim(L∩N)− dimM+ dimL+ dimN− dim(L∩N)
=−2n− 1+ n+ dimN= dimN− n− 1.
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Proposition 5.6 (Projection of non-horizontal Lagrangian submanifold is Lagrangian).
Under the hypotheses of theorem 5.1, let L ↪→M be a non-horizontal Lagragian submanifold.
If L and N have clean intersection and LN := π(L∩N) ↪→ N/F is a submanifold, then LN is
Lagrangian.

Proof. The proof follows the same lines as that of proposition 5.5. That LN is isotropic follows
easily from proposition 5.3. However, in order to calculate dimLN, we need to distinguish
whether L∩N is horizontal or not.

i) If L∩N is horizontal, we need to check that dimLN = dimN− n− 1, since LN is horizontal.
Because (TqL∩TqN⊥Λ)⊥Λ = TqL∩Hq+(TqN⊥Λ)⊥Λ , we have

dim
(
TqL∩Hq+

(
TqN

⊥Λ
)⊥Λ

)
= dimM− dim

(
TqL∩TqN⊥Λ

)
− 1.

It is easy to check that dim(TqL∩Hq+(TqN⊥Λ)⊥Λ) = dim(TqL∩Hq+TqN)− 1 and
thus,

dim
(
TqL∩TqN⊥Λ

)
= dimM− dim(TqL∩Hq+TqN) .

We conclude that

dimLN = dim(L∩N)− dim
(
TqL∩TqN⊥Λ

)
= dim(L∩N)− (dimM− dim(TqL∩Hq+TqN))

= dim(L∩N)− (dimM− dim(TqL∩Hq)− dimN+ dim(TqL∩Hq ∩TqN))
= dim(L∩N)− dimM+ dimL− 1+ dimN− dim(TqL∩TqN)
= dimN− dimM+ dimL− 1= dimN− 2n− 1+ n+ 1− 1= dimN− n− 1,

where we have used that TqL∩Hq ∩TqN= TqL∩TqN, since N∩L is horizontal, and
dimTqL∩Hq = dimL− 1, because TqL 6⊆ Hq.

ii) If L∩N is not horizontal, we need to check that dimLN = dimN− n. This follows from the
same calculation done in i), using that

dim(TqL∩Hq ∩TqN) = dim(TqL∩TqN)− 1.

5.4. Horizontal coisotropic reduction

We will restrict the study to horizontal coisotropic submanifolds N ↪→M, that is, manifolds
satisfying TqN⊆Hq for every q ∈ N. Note that in this case the distribution (TN)⊥Λ is also
regular, since

dim(TqN)
⊥Λ = dimM− dimN− dim

(
Ker]Λ ∩ (TqN)

0
)
= dimM− dimN− 1.

Theorem 5.2 (Horizontal coisotropic reduction in the cosymplectic setting). Let (M,Ω,θ)
be a cosymplectic manifold and i : N ↪→M be an horizontal coisotropic submanifold. Denote
byF the space of leaves determined by the regular and involutive distribution (TN)⊥Λ . If N/F
admits a manifold structure such that π : N→ N/F is a submersion, then there exists a unique
2- form ΩN in N/F such that

π∗ΩN = i∗Ω

and (N/F ,ΩN) is a symplectic manifold.
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Proof. Since N is horizontal and the horizontal distribution is integrable, N will be contained
in an unique symplectic leaf and thus, we are performing symplectic reduction. The proof is
just repeating what has been done in theorem 3.2.

We can generalize this process to arbitrary submanifolds. Let N ↪→M be a coisotropic sub-
manifold. Since in general we cannot guarantee the well-definedness of the 2-form in the quo-
tient, we will reduce the intersection of N with each one of the symplectic leaves. It is clear
that TN∩H is an involutive distribution, since TN and H are. If this distribution was regular,
for every q ∈ N there would exist an unique maximal leaf of the distribution, say Sq. Notice
that Sq ↪→M is an horizontal submanifold. We can perform coisotropic reduction on each of
these submanifolds.

5.4.1. Projection of Lagrangian submanifolds

Proposition 5.7. Let L ↪→M be a Lagrangian submanifold. If L and N have clean intersection
and LN := π(L∩N) is a submanifold, then LN is Lagrangian.

Proof. Let q ∈ N∩L, we have to prove that

T[q]LN = dqπ · (TqL∩TqN)

is a Lagrangian subspace of T[q]N/F = T[q]N/(TqN)
⊥Λ . Since N is horizontal, TqN⊆Hq.

Now, from proposition 5.3, we know that

(TqN)
⊥Ω|H = (TqN)

⊥Λ ⊆ TqN,

that is, TqN is a coisotropic subspace of Hq, with its natural symplectic structure. A similar
argument shows that TqL is a Lagrangian subspace of Hq. Now, from symplectic reduction
(linear symplectic reduction) we conclude that

T[q]LN = dqπ · (TqL∩TqN)

is a Lagrangian submanifold of TqN/(TqN)
⊥Λ = T[q]N/F , with the symplectic structure

induced by Ωq|H, which coincides sith the symplectic structure induced by Ωq, as a quick
check shows.

6. Jacobi structures

Contact and cocontact manifolds are not Poisson manifolds. However, there is still a Lie
bracket defined in the algebra of functions, as we will see. This bracket induces what is called
a Jacobi manifold. In this section we define and study such structures (see [38, 42] for more
details).

Definition 6.1 (Jacobi Manifold). A Jacobi structure on a manifold M is a Lie bracket
defined in the algebra of functions (C∞(M),{·, ·}) that satisfies the weak Leibniz rule, that
is,

supp{f,g} ⊆ supp f ∩ suppg.

Every Jacobi bracket can be uniquely expressed as

{f,g}= Λ(df,dg)+ fE(g)− gE( f) ,
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where Λ is a bivector field (called the Jacobi tensor) and E is a vector field. Λ and E satisfy
the equalities

[E,Λ] = 0, [Λ,Λ] = 2E∧Λ;

where [·, ·] is the Schouten–Nijenhuis bracket. Conversely, given a bivector fieldΛ and a vector
field E,

{f,g} := Λ(df,dg)+ fE(g)− gE( f)

defines a Jacobi bracket if and only if both equalities above hold.

Remark 6.1. It is clear that Poisson manifolds are Jacobi manifolds, taking E= 0.

The Jacobi tensor allows us to define the morphism

]Λ : T∗M→ TM; α 7→ iαΛ.

Define the Λ-orthogonal of distributions ∆ as

∆⊥Λ := ]Λ
(
∆0

)
.

We can define the Hamiltonian vector field defined by a function H as

XH = ]Λ (dH)+HE.

Just like in the Poisson case, we say that a distribution∆ is:

i) Isotropic if∆⊆∆⊥Λ ;
ii) Coisotropic if ∆⊥Λ ⊆∆;
iii) Legendrian if ∆⊥Λ =∆.

These definitions extend naturally to submanifolds.

Remark 6.2. As in the case of Poisson manifolds, a Jacobi structure on a manifoldM defines
a characteristic distribution S as follows: Sx is the vector subspace of TxM generated by the
values of all Hamiltonian vector fields at x and the vector field E evaluated at x. This is again
an involutive distribution in the sense of Stefan and Sussmann [55, 56], and the leaves of
the corresponding foliation are contact manifolds if the leaf has odd dimension, and locally
conformal symplectic manifolds, if the leaf has even dimension. The definition of the Jacobi
bracket on the leaves follows the same path that in the case of Poisson manifolds.

7. Coisotropic reduction in contact geometry

Contact manifolds are the natural setting for Hamiltonian systems with dissipation, instead of
symplectic Hamiltonian systems where the antisymmetry of the symplectic form provides con-
servative properties [8, 15]. In the Lagrangian picture, contact Lagrangian systems correspond
to the so-called Lagrangians depending on the action, and instead of Hamilton’s principle, one
has to use the so-called Herglotz principle to obtain the dynamics [20].

Definition 7.1 (Contact manifold). A contact manifold is a couple (M,η) whereM is a (2n+
1)-dimensional manifold, η is a 1-form and η ∧ (dη)n 6= 0.

In this case we also have Darboux coordinates (qi,pi,z) in M [30] such that

η = dz− pidqi.
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We have also have a bundle isomorphism defined as in the cosymplectic case

[η : TM→ T∗M; vq 7→ ivqdη+ η (vq) · η,

its inverse ]η = [−1
η , and a couple of natural distributions:

i) The horizontal distributionH := Kerη;
ii) The vertical distribution V := Kerdη.

We can find different types of tangent vectors at a point q ∈M. Indeed, a tangent vector
v ∈ TqM will be called

i) Horizontal if v ∈Hq;
ii) Vertical if v ∈ Vq.

This time, however, we cannot define a canonical Poisson structure since the bivector field

Λ(α,β) :=−dη (]η (α) , ]η (β))

is not a Poisson tensor. In fact,

[Λ,Λ] =−2R∧Λ; [E,Λ] = 0

where R is the Reeb vector field defined as R := ]η(η) (locally R= ∂
∂z ). This is easily seen

performing a direct calculation in Darboux coordinates using the local expresion

Λ =
∂

∂pi
∧ ∂

∂qi
+ pi

∂

∂pi
∧ ∂

∂z
.

This defines a Jacobi structure in M taking Λ as above and E=−R (see section 6). The
Jacobi bracket is locally expressed as

{f,g}= ∂f
∂pi

∂g
∂qi

− ∂f
∂qi

∂g
∂pi

+ pi

(
∂f
∂pi

∂g
∂z

− ∂g
∂pi

∂f
∂z

)
+ g

∂f
∂z

− f
∂g
∂z
.

The morphism induced by the Jacobi tensor Λ satisfies

Ker]Λ = 〈η〉, Im]Λ =H.

Remark 7.1. Although notation between cosymplectic and contact manifolds is similar, they
are different in nature. In cosymplectic geometry, we had a closed 1-form θ, and a closed 2-
form Ω satisfying the non-degeneracy condition. In contact geometry we have a 1-form η and
a (closed) 2-form dη which also satisfies the non-degeneracy condition. In each tangent space,
these structures will be isomorphic. Indeed, we can always assume that pi = 0 at certain q ∈M,
which would give η = dz in said point. However, they are far from locally isomorphic. In
cosymplecticmanifolds, the horizontal distribution is involutive, but in contact manifolds is not
(this is the key to obtain dissipative dynamics). In section 8wewill enphasize on the differences
between these geoemtries by studying the variational principle in contact mechanics.

7.1. Hamiltonian and evolution vector fields as Lagrangian and Legendrian submanifolds

Definition 7.2 (Hamiltonian vector field). Let H ∈ C∞(M). Define the Hamiltonian vector
field of H as

XH := ]Λ (dH)−HR= ]η (dH)− (R(H)+H)R.
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Locally, it has the local expression

XH =
∂H
∂pi

∂

∂qi
−
(
∂H
∂qi

+ pi
∂H
∂z

)
∂

∂pi
+

(
pi
∂H
∂pi

−H

)
∂

∂z
.

The dynamics corresponding to a Hamiltonian vector field XH are determined by

dqi

dt
=
∂H
∂pi

,

dpi
dt

=−∂H
∂qi

− pi
∂H
∂z
,

dz
dt

= pi
∂H
∂pi

−H.

For instance, if we take as Hamiltonian

H :=
p2

2m
+
κ2mq2

2
+ γz,

the equations determined by XH are

dq
dt

=
p
m
,

dp
dt

=−κ2mq− γp,

dz
dt

=
p2

2m
− κ2mq2

2
− γz,

which are precisely the equations for the damped harmonic oscillator.
We can define a symplectic structure in TM taking Ω0 := [∗ηΩM, where ΩM is the canonical

symplectic structure in T∗M. In local coordinates (qi,pi,z, q̇i, ṗi, ż), it has the expression

Ω0 =pipjdq
i ∧ dq̇j+

((
1+ δi

j
)
pi q̇

j− δji ż
)
dqi ∧ dpj− dqi ∧ dṗi − pi dq

i ∧ dż

+ dpi ∧ dq̇i + dz∧ dż− pi dz∧ dq̇i − q̇i dz∧ dpi

=dqi ∧
(
pipi dq

j+
(
1+ δji

)
pi q̇

jdpj− żdpi − dṗi − pi dż
)

+ dpi ∧ dq̇i + dz∧
(
dż− pidq̇

i − q̇i dpi
)
.

Definition 7.3 (Gradient vector field). Given a Hamiltonian H on M, define the gradient
vector field of H as

gradH := ]η (dH) .

Locally, it is given by

gradH=
∂H
∂pi

∂

∂qi
−
(
∂H
∂qi

+ pi
∂H
∂z

)
∂

∂pi
+

(
pi
∂H
∂pi

+
∂H
∂z

)
∂

∂z
.

We have the following relation between both vector fields

XH = gradH− (R(H)+H)R.
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Just like in the previous sections, a vector field X :M→ TM is locally a gradient vector field
if and only if it defines a Lagrangian submanifold in (TM,Ω0). The proof is straight-forward,
checking that

X∗Ω0 =−dX♭η .

We can also interpret the Hamiltonian vector field XH as a Lagrangian submanifold of TM, but
we need to modify slightly the symplectic form. It is easy to verify that

X∗
HΩ0 = d(R(H)η+Hη) ,

therefore, taking

ΩH := Ω0 − d(R(H)η+Hη)v ,

we have

X∗
HΩH = 0.

It is clear that ΩH is a symplectic form. We have proved:

Proposition 7.1. The Hamiltonian vector field XH :M→ TM defines a Lagrangian submani-
fold of the symplectic manifold (TM,ΩH).

Nowwe study evolution vector fields, an important vector field in the application of contact
geometry to thermodynamics.

Definition 7.4. Given a Hamiltonian H, we define the evolution vector field as

EH := XH+HR.

Locally, the evolution vector field is written

EH =
∂H
∂pi

∂

∂qi
−
(
∂H
∂qi

+ pi
∂H
∂z

)
∂

∂pi
+ pi

∂H
∂pi

∂

∂z
.

Let us see how we can modify the symplectic form Ω0 in such a way that EH defines a
Lagrangian submanifold. We have

E∗
HΩ0 = X∗

HΩ0 +(HR)
∗
Ω0 = d(R(H)η+Hη)− d(Hη) = d(R(H)η) ,

and thus, EH defines a Lagrangian submanifold of (TM, Ω̃H), where

Ω̃H =Ω0 − d(R(H)η) .

We can also interpret Hamiltonian and evolution vector fields as Legendrian submanifolds
of a certain contact structure defined on TM×R.

Definition 7.5. Let (M,η) be a contact manifold. Define the contact form on TM×R as

η̂ := ηc+ tηv,

where ηc, ηv are the complete and vertical lifts [16]. It is easily checked that η̂ defines a contact
structure [15].

In local coordinates it has the expression:

η̂ = dż− ṗi dq
i − pi dq̇

i + tdz− tpi dq
i.

We have the following [15]:
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Proposition 7.2. Let XH :M→ TM be a Hamiltonian vector field. Then, the submanifold
defined by the immersion

i :M ↪→ TM×R; p 7→ (XH (p) ,R(H))

is a Legendrian submanifold of (TM×R, η̂).

Proof. Using the properties of complete and vertical lifts we have

(XH×R(H))∗ η̂ = LXHη+R(H)η.

Using lemma 7.2 it will be sufficient to see that LXHη =−R(H). This is a straight-forward
verification since

LXHη = diXHη+ iXHdη =−dH+ dH−R(H)η.

7.2. An overview of the use of contact geometry in thermodynamics

A thermodynamical system is characterized by the following variables(
H,T,S,Pi,V

i
)
,

corresponding to energy, temperature, entropy, and the generalized pressures and volumes,
respectively. We will denote qi = Vi, following the notation used so far. The energy of the
system is a function

H : T∗Q×R→ R;
(
qi,pi,S

)
7→ H

(
qi,pi,S

)
.

The first law of thermodynamics can be written as

dH= δQ− δW,

where δQ and δW are one forms representing the heat and work, respectively. We will assume
that these forms have local expressions

δQ= TdS, δW = Pi dq
i,

for some functions Pi,T that physically represent the conjugate variables to qi (pressure, if qi

represented volume), and S (temperature, if S was the entropy), respectively. Then, the first
law of thermodynamics reads

dH= TdS−Pi dq
i.

If we were studying an isolated system, energy would be conserved, that is

0= TdS−Pi dq
i

or, dividing by T,

0= dS− Pi
T
dqi.

Identifying pi = Pi/T, after a change of variables if necessary, we obtain

0= dS− pi dq
i.

Defining

η := dS− pi dq
i,
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the canonical contact form in T∗Q×R, we conclude that isolated processes take place in
Legendrian submanifolds of T∗Q×R, motivating their study.

It turns out that the integral curves of the evolution vector field EH can be interpreted as an
isolated system

Proposition 7.3. The integral curves of EH satisfy
dH
dt

= 0.

Furthermore, locally

dS
dt

= pi dq
i =

Pi
T
dqi.

Proof. Indeed, by definition we know that

igradHdη+ η (H)η = dH.

Therefore,

dH
dt

= dH · EH = dH ·XH+HR(H) = dH · gradH− (R(H)+H)R(H)+HR(H)

= (igradHdη+ η (H)η) · gradH− (R(H))2 = 0.

Now, the last part is a consequence of the equality

dH= dS− pi dq
i.

For more details on the subject, we refer to [4, 47, 48, 51, 52], (see also two modern
approaches [9, 10]).

7.3. Coisotropic reduction

Coisotropic reduction in contact manifolds has been developed in [15] (see also [41, 57]).
The following definition will result useful. Given a subspace∆q ⊆ TqM, we define the dη-

orthogonal complement as

∆
⊥dη
q := {v ∈ TqM, | dη (v,w) = 0 ∀w ∈∆q} .

Proposition 7.4. Let ∆q ⊆ TqM be a subspace. Then

∆
⊥dη
q ∩Hq ⊆∆⊥Λ

q .

Furthermore, ifR(q) ∈∆q or ∆q ⊆Hq, the equality holds.

Proof. Let v ∈∆
⊥dη
q ∩Hq and take α := ivdη. It is clear that α ∈∆0

q. We will prove that
]Λ(−α) = v. Indeed, for β ∈ T∗qM, since bη(v) = α (as a direct calculation shows), we have

〈β,]Λ (α)〉= Λ(α,β) = Ω(]η (α) , ]η (β)) = Ω(v, ]η (β))

=−Ω(]η (β) ,v)− η (]Λ (β))η (v) =−〈[η (]η (β)) ,v〉=−〈β,v〉,

that is, v= ]Λ(−α).
Now, if R(q) ∈∆q, we compare dimensions. Since Ker]Λ = 〈η〉 and η 6∈∆0

q, we have

dim∆⊥Λ
q = dim∆0

q = dimM− dim∆q.
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Furthermore,∆⊥dη ∩Hq has the same dimension, since

∆
⊥dη
q ∩Hq = (∆q ∩Hq⊕Vq)⊥dη ∩Hq = (∆q ∩Hq)

⊥dη ∩V⊥dη
q ∩Hq

= (∆q ∩Hq)
⊥dη ∩Hq.

This latter is just the symplectic complement in (Hq,dη|H) and hence,

dim
(
∆

⊥dη
q ∩Hq

)
= dimHq− dim(∆q ∩Hq) = dimM− 1− (dim∆q− 1) .

Now, if ∆q ⊆Hq, η ∈∆0
q and, thus,

dim∆
⊥dη
q = dimM− dim∆q− 1.

Since ∆⊥dη
q ∩Hq is just the symplectic complement of ∆q we have

dim
(
∆

⊥dη
q ∩Hq

)
= dimHq− dim∆q = dimM− 1− dim∆q.

This proposition allows us to characterize Legendrian submanifolds:

Lemma 7.1. If L ↪→M is a Legendrian submanifold, then L is horizontal and dimL= n (where
dimM= 2n+ 1). Furthermore, if L is horizontal and isotropic (or coisotropic) with dimL= n,
L is Legendrian.

Proof. Since ]Λ takes values inH, it is clear that every Legendrian submanifold is horizontal.
Since L is horizontal,

dimTqL
⊥Λ = dimM− dimL− 1.

From the previous equation and using that TqL⊥Λ = TqL, we deduce that dimL= dimM−
dimL− 1. This implies dimL= n. The last property is easily seen via a direct comparison of
dimensions.

We will also need characterization of isotropic submanifolds in contact geometry:

Lemma 7.2. A submanifold N ↪→M is isotropic if and only if i∗η = 0.

Proof. Necessity is clear, since ]Λ takes values in H. Now suppose that N is horizontal. We
have i∗η = 0 and thus, i∗dη = 0. This implies that TqN⊆ TqN⊥dη ∩Hq ⊆ TqN⊥Λ , using pro-
position 7.4.

Proposition 7.5. Let i : N ↪→M be a coisotropic submanifold such thatR(q) ∈ TqN for every
q ∈ N or TqN⊆Hq for every q ∈ N. Define η0 := i∗η. Then

TqN
⊥Λ = Kerdη0 ∩Kerη0.

Proof. Let q ∈ N. Proposition 7.4 implies that

TqN
⊥Λ = TqN

⊥η ∩Hq.

But, since TqN is coisotropic, then it is just Kerdη0 ∩Kerη0.

We then have the following result:

Proposition 7.6. Let i : N ↪→M be a coisotropic subamnifold such thatR(q) ∈ TqN for every
q ∈ N or TqN⊆Hq for every q ∈ N. Then, the distribution TN⊥Λ defined by q 7→ TqN⊥Λ is
involutive.
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Proof. Denote η0 := i∗η and let X,Y be vector fields along N taking values in TN⊥Λ .
Proposition 7.5 implies that

iXdη0 = iYdη0 = 0; iXη0 = iYη0 = 0.

It suffices to check that

i[X,Y]dη0 = 0; i[X,Y]η0 = 0.

Indeed, taking Z an arbitrary vector field in N, we have

0= d2 η0 (X,Y,Z) = X(dη0 (Y,Z))−Y(dη0 (X,Z))+ Z(dη0 (X,Y))

− dη0 ([X,Y] ,Z)+ dη0 ([X,Z] ,Y)− dη0 ([Y,Z] ,X) =−dη0 ([X,Y] ,Z) ,

where we have used that X,Y ∈ Kerdη0. In a similar way we obtain

0= dη0 (X,Y) = X(η0 (Y))−Y(η0 (X))− η0 ([X,Y]) =−η0 ([X,Y]) ,

that is, [X,Y] ∈ Kerdη0 ∩Kerη0 = TN⊥Λ .

7.4. Vertical coisotropic reduction

We will restrict the study to vertical submanifolds, that is, submanifolds satisfying R(q) ∈
TqN, for every q ∈ N. Notice that if N is a coisotropic vertical submanifold, the distribution
(TN)⊥Λ is regular of rank

rank (TN)⊥Λ = dimM− dimN.

Theorem 7.1 (Vertical coisotropic reduction in the contact setting). Let (M,η) be a contact
manifold and i : N ↪→M be a coisotropic submanifold such that R(q) ∈ TqN for every q ∈ N.
If the space of all leaves N/F admits a manifold structure such that the projection π : N→
N/F is a submersion, then there exists a unique 1-form ηN in N/F such that π∗ηN = i∗η and
(N/F ,ηN) is a contact manifold.

Proof. Denote η0 := i∗η. Uniqueness is clear from the imposed relation since it forces us to
define

ηN ([u]) := η0 (u) .

It only remains to check well-definedness and that it defines a contact manifold. That this
definition does not depend on the chosen representative vector is clear since a vector tangent
to the distribution is necessarily in the kernel of η. Furthermore, if X is a vector field tangent
to the distribution TN⊥Λ , proposition 7.5 implies

LXη0 = 0= diXη0 + iXdη0 = 0,

since X ∈ Kerdη0 ∩Kerη0.
To check that it is a contact manifold, we calculate the dimension of N/F . We have that

rank(TqN)⊥Λ = dimM− dimN. We conclude, taking k := dimN, that

dimN/F = 2dimN− dimM= 2(k− n− 1)+ 1

and therefore, (N/F ,ηN) is a contact manifold if and only if

ηN ∧ (dηN)
k−n−1 6= 0.
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Since π is a submersion, this is equivalent to η0 ∧ (dη0)k−n−1 6= 0. This is straightforward using
proposition 7.5.

7.4.1. Projection of Legendrian submanifolds. Nowwe check that the image of a Legendrian
submanifold L ↪→M under the projection π : N→ N/F is again a Legendrian submanifold.

Proposition 7.7. Let L ↪→M be a Legendrian submanifold such that L and N have clean inter-
section. If LN := π(L∩N) is a submanifold of N/F , then LN is Legendrian.

Proof. It suffices to check that LN is horizontal, isotropic and dimLN = dimN− n− 1 using
lemma 7.2. Since L is horizontal, LN is horizontal and thus, LN is isotropic.

Comparing dimensions, we have

dimT[q]LN = dimTqL∩TqN− dimTqL∩TqN⊥Λ . (10)

Now, since (TqL∩TqN⊥Λ)⊥Λ = TqL+(TqN⊥Λ)⊥Λ and (TqL∩TqN)⊥Λ is horizontal, we have

dim
(
TqL+

(
TqN

⊥Λ
)⊥Λ

)
= dimM− dim

(
TqL∩TqN⊥Λ

)
− 1. (11)

Using dim(TqL∩TqN⊥Λ) = dim(TqL+TqN)− 1 and substituting (11)) in (10), we obtain

dimLN = dimL∩N− (dimM− dim(TqL+TqN))

= dimL∩N− dimM+ dimN+ dimL− dimL∩N
= dimN− 2n− 1+ n= dimN− n− 1.

7.5. Horizontal coisotropic reduction

We will restrict the study to horizontal coisotropic submanifolds N→M, that is, manifolds
satisfying TqN⊆Hq for every q ∈ N.

Remark 7.2. Notice that in this case reduction is trivial, since the only coisotropic horizontal
submanifolds of a contact manifold are those that are Legendrian. This would imply

dimN/F = 0,

making the resulting manifold trivial.

Given an arbitrary coisotropic submanifold N ↪→M, we cannot guarantee the well-
definedness of the 2-form in the quotient N/F (actually, in the contact setting, we cannot even
guarantee the integrability of TN⊥Λ) so this time (referring to horizontal reduction in cosym-
plectic geometry) we cannot obtain a foliation of N in symplectic leaves, since TN∩H|N is
not integrable in the general setting.

Remark 7.3. The triviality of this case makes the projection of Lagrangian submanifolds
trivial.
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8. An interlude: different geometries provide different dynamics

In this section we will show how different geometric structures on the same phase space
can provide different dynamics for the same Lagrangian or Hamiltonian function. This fact
explains the different equations of motion between the cosymplectic case (time-dependent
Lagrangians) and the contact case (action-dependent Lagrangians). At the end of the section
we will also see that Hamilton’s principle can be generalised to the so-called Herglotz prin-
ciple, which gives a new way to obtain these different dynamics.

8.1. The Lagrangian picture

In order to distinguish the different dynamics discussed in this paper and their physical nature,
it is useful to recall their Lagrangian formulation.

Assume that L : TQ−→ R is a Lagrangian function, where Q is a n-dimensional configura-
tion manifold. Then, L= L(qi, q̇i), where (qi) are coordinates in Q and (qi, q̇i) are the induced
bundle coordinates in TQ (positions and velocities). We will assume that L is regular, that is,
the Hessian matrix(

∂2L
∂q̇i ∂q̇j

)
is regular. Using the canonical endomorphism S on TQ locally defined by

S= dqi ⊗ ∂

∂q̇i
.

One can construct a 1-form λL defined by

λL = S∗ (dL)

and the 2-form

ωL =−dλL.

Then, ωL is symplectic if and only if L is regular.
In that case, we have the corresponding vector bundle isomorphism

[ωL : T(TQ)−→ T∗ (TQ)

[ωL (v) = ivωL

and the Hamiltonian vector field

ξL = XEL ,

defined by

[ωL (ξL) = dEL,

where EL =∆(L)−L is the energy, and∆= q̇i ∂
∂q̇i is the Liouville vector field on TQ.

The vector field ξL (the Euler–Lagrange vector field) is a second order differential equation,
that is, its integral curves are just the tangent lifts of its projections to Q. These projections are
called the solutions of ξL, and satisfy the usual Euler–Lagrange equations

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0. (12)
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Next, we recall here the geometric formalism for time-dependent Lagrangian systems. In
this case, we also have a regular Lagrangian L : TQ×R−→ R, and we consider the cosym-
plectic structure given by the pair (ΩL,dz) (in this case z represents time), where

ΩL =−dλL.

It is esay to check that L is regular if and only if

dz∧Ωn
L 6= 0.

In that case, we have a cosymplectic structure and, defining (Wij) to be the inverse matrix of

(Wij) =

(
∂2L
∂q̇i ∂q̇j

)
.

The Reeb vector field of the cosymplectic manifold (TQ,ΩL,dz) is locally given by

R=
∂

∂z
−Wij ∂

2L
∂q̇j∂z

∂

∂q̇i
.

Recall that we had the vector bundle isomorphism

[dz,ΩL : T(TQ×R)−→ T∗ (TQ×R)
[dz,ΩL (v) = ivΩL+ dz(v) dz

which gives the vector fields defined in section 5. In particular, we have the evolution vector
field

EEL = XEL +R,

where EL is the energy of the system,

EL =∆(L)−L= q̇i
∂L
∂qi

−L.

Now, if (qi(t), q̇i(t),z(t)) is an integral curve of EL, then its projection toQ satisfies the usual
Euler–Lagrange equations

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0, (13)

since z= t+ constant.
Finally, let L : TQ×R−→ R be a Lagrangian function, L= L(qi, q̇i,z), where z is a global

coordinate on R, representing action.
We will assume that L is regular, that is, the Hessian matrix(

∂2L
∂q̇i ∂q̇j

)
is regular. So, we construct a 1-form λL defined by

λL = S∗ (dL)

where now S and S∗ are the natural extension of S.
Now, the 1-form

ηL = dz− ∂L
∂q̇i

dqi

is a contact form on TQ×R if and only if L is regular, and then

ηL ∧ (dηL)
n 6= 0.
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The corresponding Reeb vector field is

R=
∂

∂z
−Wij ∂

2L
∂q̇j∂z

∂

∂q̇i
.

The energy of the system is defined as in the precedent cases by

EL =∆(L)−L

where∆= q̇i ∂
∂q̇i is the Liouville vector field on TQ extended in the usual way to TQ×R. The

vector bundle isomorphism of contact manifolds defined in section 7 is given by

[ηL : T(TQ×R)−→ T∗ (TQ×R) ; [ηL (v) = iv (dηL)+ (ivηL) · ηL.

We shall denote its inverse by ]ηL = ([ηL)
−1.

Denote by ξL the unique vector field defined by the equation

[ηL (ξL) = dEL− (R(EL)+EL) ηL. (14)

Note that this is precisely the Hamiltonian vector field of EL defined in section 7. A direct
computation from equation (14) shows that, if (qi(t), q̇i(t),z(t)) is an integral curve of ξ̄L, we
obtain

q̈i
∂

∂q̇i

(
∂L
∂q̇j

)
+ q̇i

∂

∂qi

(
∂L
∂q̇j

)
+ ż

∂

∂z

(
∂L
∂q̇i

)
− ∂L
∂qi

=
∂L
∂q̇i

∂L
∂z

with an additional equation ż= L. These equations correspond to the generalized Euler–
Lagrange equations considered by G Herglotz in 1930.

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi

=
∂L
∂q̇i

∂L
∂z
. (15)

Notice that Herglotz equations depend on the action, so this type of Lagrangians are called in
physics dependent on the action.

8.2. The Herglotz principle

In order to give additional differences between the usual Hamilton principle and Herglotz
principle, it is interesting to recall briefly the last one and how it is a natural generalization of
the former one.

Let L : TQ×R→ R be a Lagrangian function.
Fix q1,q2 ∈ Q and an interval [a,b]⊂ R. We denote byΩ(q1,q2, [a,b])⊆ (C∞([a,b]→ Q))

the space of smooth curves ξ such that ξ(a) = q1 and ξ(b) = q2. This space has the structure of
an infinite dimensional smooth manifold whose tangent space at ξ is given by the set of vector
fields over ξ that vanish at the endpoints, that is,

TξΩ(q1,q2, [a,b]) ={vξ ∈ C∞ ([a,b]→ TQ) | τQ ◦ vξ = ξ, vξ (a) = 0, vξ (b) = 0} . (16)

We will consider the following maps. Fix an initial action c ∈ R. Let

Z : Ω(q1,q2, [a,b])→C∞ ([a,b]→ R) (17)

be the operator that assigns to each curve ξ the curve Z(ξ) that solves the following ODE:

dZ (ξ)(t)
dt

= L
(
ξ (t) , ξ̇ (t) ,Z (ξ)(t)

)
, Z (ξ)(a) = c. (18)
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Now we define the action functional as the map which assigns to each curve the solution
to the previous ODE evaluated at the endpoint:

A : Ω(q1,q2, [a,b])→ R,
ξ 7→ Z (ξ)(b) ,

(19)

that is, A= evb ◦Z , where evb : ζ 7→ ζ(b) is the evaluation map at b. We have

Theorem 8.1. Let L : TQ×R→ R be a Lagrangian function and let ξ ∈ Ω(q1,q2, [a,b]) be a
curve in Q. Then, (ξ, ξ̇,Z(ξ)) satisfies the Herglotz’s equations if and only if ξ is a critical
point of A.

Remark 8.1. This theorem generalizes Hamilton’s Variational Principle. In the case that the
Lagrangian is independent of theR coordinate (i.e. L(qi, q̇i,z) = L̂(qi, q̇i)) the contact Lagrange
equations reduce to the usual Euler–Lagrange equations. In this situation, we can integrate the
ODE of (19) and we get

A(ξ) =

ˆ b

a
L̂
(
ξ (t) , ξ̇ (t)

)
dt+

c
b− a

, (20)

that is, the usual Euler–Lagrange action up to a constant.

8.3. The Legendre transformation and the Hamiltonian picture

Given a Lagrangian function L : TQ×R−→ R we can define the Legendre transformation

FL : TQ×R−→ T∗Q×R

given by

FL
(
qi, q̇i,z

)
=
(
qi, p̂i,z

)
where

p̂i =
∂L
∂q̇i

.

A direct computation shows that

FL∗λQ = λL,

where λQ is the canonical Liouville form on T∗Q, here extended to the product manifold T∗Q×
R. If the Lagrangian does not depend on time, then the Legendre transformation reduces to a
bundle morphism

FL : TQ−→ T∗Q

and then the pull-back of the canonical symplectic form ωQ on T∗Q is just ωL. In addition, the
energy EL corresponds via the Legendre transformation to the Hamiltonian energyH such that

(FL)∗ (H) = EL.

Since the corresponding geometric structures (symplectic, cosymplectic and contact) on both
sides are preserved by the Legendre transformation, one concludes that corresponding dynam-
ics are FL-related (see [14] for the details).
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9. Coisotropic reduction in cocontact geometry

Cocontact manifolds have been introduced in [13] just to provide a setting for dissipative sys-
tems which also depend on time. In geometric terms, we are combining cosymplectic and
contact structures.

Definition 9.1 (Cocontact manifold). A cocontact manifold is a triple (M,θ,η), where M is
a (2n+ 2)-dimensional manifold, θ is a closed 1-form, η is a 1-form and, θ∧ η ∧ (dη)n 6= 0 is
a volume form.

The bundle isomorphism in this case is defined as

[θ,η : TM→ T∗M; v 7→ θ (v)θ+ ivdη+ η (v)η,

and its inverse is denoted by ]θ,η = [−1
θ,η.

In cocontact geometry there exists as well a set of canonical coordinates (qi,pi,z, t), which
will be called Darboux coordinates, such that

η = dz− pi dq
i; θ = dt.

We can define as well the Reeb vector fields as

Rz := ]θ,η (η) ; Rt = ]θ,η (θ) ,

which can be expressed locally as

Rz =
∂

∂z
; Rt =

∂

∂t
.

We also have vertical and horizontal distributions:

i) The z-horizontal distribution,Hz := Kerη;
ii) The t-horizontal distribution,Ht := Kerθ;
iii) The tz-horizontal distributionHtz :=Ht ∩Hz;
iv) The t-vertical distribution, Vt := 〈Rt〉;
v) The z-vertical distribution, Vz := 〈Rz〉.

9.1. Hamiltonian vector fields as Lagrangian and Legendrian submanifolds

Just like in previous sections, define the gradient vector field of certain Hamiltonian H ∈
C∞(M) as

gradH= ]θ,η (dH) .

Locally, the gradient vector field is expressed:

gradH=
∂H
∂pi

∂

∂qi
−
(
∂H
∂qi

+ pi
∂H
∂z

)
∂

∂pi
+

(
pi
∂H
∂pi

+
∂H
∂z

)
∂

∂z
+
∂H
∂t

∂

∂t
.

We can define a symplectic structure in TM taking

Ω0 := [∗θ,ηΩM,

whereΩM is the canonical symplectic form on the cotangent bundle. In the induced coordinates
(qi,pi,z, q̇i, ṗi, ż), Ω0 takes the form

Ω0 =dqi ∧
(
pipi dq

j+
(
1+ δji

)
pi q̇

jdpj− żdpi − dṗi − pi dż
)

+ dpi ∧ dq̇i + dz∧
(
dż− pidq̇

i − q̇i dpi
)
+ dt∧ dṫ.

35



J. Phys. A: Math. Theor. 57 (2024) 163001 Topical Review

It is easy to verify that a vector field X :M→ TM is a locally gradient vector field if and
only if it defines a Lagrangian submanifold in (TM,Ω0).

Definition 9.2 (Hamiltonian vector field). Given a Hamiltonian H on M, define its
Hamiltonian vector field as

XH := ]θ,η (dH)− (Rz (H)+H)Rz+(1−Rt (H))Rt.

The Hamiltonian vector field has the local expression

XH =
∂H
∂pi

∂

∂qi
−
(
∂H
∂qi

+ pi
∂H
∂z

)
∂

∂pi
+

(
pi
∂H
∂pi

−H

)
∂

∂z
+
∂

∂t
.

Integral curves of this vector field satisfy

dqi

dλ
=
∂H
∂pi

,

dpi
dλ

=−∂H
∂qi

− pi
∂H
∂z
,

dz
dλ

= pi
∂H
∂pi

−H,

dt
dλ

= 1,

which are equivalent to the time-dependent version of the contact equations:

dqi

dt
=
∂H
∂pi

,

dpi
dt

=−∂H
∂qi

− pi
∂H
∂z
,

dz
dt

= pi
∂H
∂pi

−H.

In general, XH does not define a Lagrangian submanifold of (TM,Ω0); but, just like in the
cosymplectic and contact scenario, we can achieve this by modifying the symplectic form.
Indeed, since

X∗
HΩ0 =−dX♭θ,η

H = d((Rz (H)+H)η)− d((1−Rt (H))θ) ,

defining

ΩH := Ω0 − d((Rz (H)+H)η)+ d((1−Rt (H))θ) ,

we have that XH defines a Lagrangian submanifold of (TM,ΩH).
Now we interpret the Hamiltonian vector field XH as a Legendrian submanifold of TM×

R×R with the cocontact structure given by the forms

η̃ := ηc+ sηv+ θc+ eθv; θ̃ = θc,

where (s, e) are the parameters in R×R. In local coordinates (qi,pi,z, t, q̇i, ṗi, ż, ṫ,s,e), these
forms have the expression:

η̃ = dż− ṗi dq
i− pi dq̇

i + sdz− spi dq
i + dṫ+ edt,

θ̃ = dṫ.
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It is easy to see that these forms define a cocontact structure. Now, given a vector field
X :M→ TM and two functions f,g on M, define

X× f × g :M→ TM×R×R; p 7→ (X(p) , f(p) ,g(p)) .

Applying the properties of complete and vertical lifts, namely X∗αc = LX(α), we have

(X× f × g)∗ η̃ = LXη+ fη+LXθ+ gθ

and

(X× f × g)∗ θ̃ = dθ (X) .

Proposition 9.1. Let H be a Hamiltonian on M. Then XH×Rz(H)× 0 defines a Legendrian
submanifold of (TM×R×R, θ̃, η̃).

Proof. Using the observation above and lemma 9.1, it is sufficient to observe that

LXHη =−Rz (H)η, LXHθ = 0.

9.2. Coisotropic reduction

A cocontact manifold is also a Jacobi manifold defining

Λ(α,β) :=−dη (](α) , ](β)) , E=−Rz,

and thus, we have theΛ -orthogonal and the corresponding definitions of isotropic, coisotropic
or Legendrian submanifolds and distributions.

Notice thatHt is an integrable distribution and that each leaf of its foliation inherits a contact
structure. Indeed,Ht is the characteristic distribution defined by the Jacobi structure, S.

Now we give a symplectic interpretation of the Λ-orthogonal. Notice that the restriction
of dη to Htz defines a symplectic structure on the distribution. Denote by ⊥dη| its symplectic
orthogonal. The Λ-orthogonal is just the symplectic orthogonal of the intersection with Htz.

Proposition 9.2. Given a distribution∆ on a cocontact manifold (M,η,θ),

∆⊥Λ = (∆∩Htz)
⊥dη| .

Proof. We check one inclusion and compare dimensions:
Let α ∈∆0

q and u ∈∆0
q ∩ (Htz)q.We will see that dηq(u, ]Λ(α)) = 0. Indeed,

dηq (u, ]Λ (α)) = dηq (u, ]Λ (α))+ θq (u)θq (]Λ (α))+ ηq (u)ηq (]Λ (α))

= 〈[(u) , ]Λ (α)〉= Λq (α,[(u)) =−dηq (](α) , ]([(u)))

=−dηq (](α) ,u) =−dηq (](α) ,u)− θq (](α))θq(u)− ηq(](α))ηq(u)

=−〈[(](α)),u〉=−α(u) = 0,

that is, ∆⊥Λ ⊆ (∆∩ (Htz)q)
⊥dη| .

Now we compare both dimensions. Let k := dim∆,rq := dim(∆0
q ∩ 〈θq,ηq〉). Since

∆0
q ∩ 〈θq,ηq〉=

(
∆q⊕ (Htz)q

)0
,
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we have

rq = dim
(
∆0
q ∩ 〈θq,ηq〉

)
= dim

(
∆q⊕ (Htz)q

)0
= 2n+ 2− dim

(
∆q⊕ (Htz)q

)
= 2n+ 2−

(
dim∆q+ dim(Htz)q− dim

(
∆q ∩ (Htz)q

))
= 2n+ 2− k− 2n+ dim

(
∆q ∩ (Htz)q

)
= 2+ dim

(
∆q ∩ (Htz)q

)
− k,

which implies that

dim
(
∆q ∩ (Htz)q

)
= k+ rq− 2.

It only remains to observe that

dim∆⊥Λ = 2n+ 2− k− rq = dim∆0 − dim
(
∆0 ∩Ker]Λ

)
and that

dim
(
∆∩ (Htz)q

)⊥dη|
= 2n+ 2− k− rq = 2n− dim

(
∆∩ (Htz)q

)
.

Now we can give a characterization of Legendrian submanifolds:

Lemma 9.1. i : L→M is a Legendrian submanifold ((TL)⊥Λ = TL) if and only if dimL= n
and

i∗θ = 0, i∗η = 0.

Proof. Necessity is clear, since L is necessarily horizontal. Sufficiency follows from i∗dη = 0
which, together with dimL= n, implies that TqL is a Lagrangian submanifold of (Htz)q, for
every q ∈ L. Using proposition 9.2, we have the equivalence.

This allows us to express the Λ-orthogonal complement of a coisotropic distribution in a
more convenient way:

Corollary 9.1. Let ∆ be a coisotropic distribution on M (∆⊥Λ ⊆∆), then

∆⊥Λ = Kerdη0|∆∩Htz ∩Kerη0 ∩Kerθ0,

where η0 and θ0 are the restrictions of η and θ to ∆, respectively.

Corollary 9.2. Let i : N ↪→M be a coisotropic submanifold of (M,θ,η). Then the distribution
TN⊥Λ is involutive.

Proof. Denote η0 := i∗η, θ0 := i∗θ and let X,Y be vector fields on N tangent to the distribution
TN⊥Λ and Z be an arbitrary tz-horizontal vector field on N. Using corollary 9.2, we only need
to check that [X,Y] ∈ Kerdη0|∆∩Htz ∩Kerη0 ∩Kerθ0. Indeed, expanding the expressions 0=
d2 η0(X,Y,Z), 0= dη0(X,Y), 0= dθ0(X,Y); we obtain

0=−dη0 ([X,Y] ,Z) ,

0=−η0 ([X,Y]) ,
0=−θ0 ([X,Y]) .

38



J. Phys. A: Math. Theor. 57 (2024) 163001 Topical Review

Now, given a coisotropic submanifold N ↪→M, since TN⊥Λ is involutive, it provides a max-
imal foliation, F . We assume that N/F inherits a manifold structure such that the canonical
projection π : N→ N/F is a submersion.

Just like in the previous cases, for the well-definedness and non-degeneracy of the forms in
the quotient, we need to restrict the coisotropic submanifolds we are studying. Consequently,
we will say that a submanifold N ↪→M is:

i) t-vertical (resp. z-vertical) if Vt ⊆ TN (resp. Vz ⊆ TN).
ii) tz-vertical, if it is both t-vertical and z-vertical.
iii) t-horizontal (resp. z-horizontal) if Ht ⊆ TN (resp.Hz ⊆ TN).
iv) tz-horizontal if it is both t-horizontal and z-horizontal, that is, if TN⊆Htz.

9.3. tz−vertical reduction

Let i : N ↪→M be a tz-vertical submanifold. It is easy to check that under these conditions

TN⊥Λ = Kerdη0 ∩Kerη0 ∩Kerθ0,

and that (TN)⊥Λ is a regular distribution of rank

rank (TN)⊥Λ = dimM− dimN.

Theorem 9.1 (tz-vertical coisotropic reduction). Let i : N ↪→M be a tz-vertical submanifold
of a cocontact manifold (M,θ,η).Denote byF the maximal foliation induced by the integrable
distribution TN⊥Λ on N. If N/F admits a manifold structure such that the canonical projection
π : N→ N/F defines a submersion, then there exists unique forms θN,ηN on N/F such that
(N/F ,θN,ηN) defines a cocontact structure and

i∗θ = π∗θN, i
∗ηN = π∗θN.

Before proving the theorem, let us calculate the dimension of the quotient. Let k+ 2 :=
dimN. We have

rank TN⊥Λ = 2n+ 2− (k+ 2) = 2n− k

and, therefore,

dimN/F = 2(k− n)+ 2.

Proof. Uniqueness is clear, since π is a submersion. We only need to check the well-
definedness taking

θN ([u]) := θ0 (u) , ηN ([u]) := η0 (u) .

Independence of the vector is clear, using proposition 9.2. For independence on the point, let
X be a vector field on N tangent to the distribution. It is easy to check that

LXη0 = 0,LXθ0 = 0;

and thus, well-definedness follows. For non-degeneracy, it is enough to proof that

θ0 ∧ η0 ∧ (dη0)
k−n 6= 0.

This follows easily from TN⊥Λ = Kerdη0 ∩Kerη0 ∩Kerθ0.
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9.3.1. Projection of Legendrian submanifolds

Proposition 9.3. Let L ↪→M be a Legendrian submanifold and i : L ↪→M be a tz-vertical
coisotropic submanifold. If L and N have clean intersection and LN = π(L∩N) is a submani-
fold in N/F , LN is Legendrian.

Proof. Using lemma 9.1, LN is clearly isotropic. Now we need to check that dimLN = k− n,
given that dimN/F = 2(k− n)+ 2.We have

dimπ (L∩N) = dim(L∩N)− rank
(
TL∩ (TN)⊥Λ

)
. (21)

Furthermore, since (TL∩ (TN)⊥Λ) = TL+(TN⊥Λ)⊥Λ and TL∩ (TN)⊥Λ is tz-horizontal,

rank
(
TL+

(
TN⊥Λ

)⊥Λ
)
= 2n− rank

(
TL∩TN⊥Λ

)
. (22)

Now, using the Grassman formula:

rank
(
TL+

(
TN⊥Λ

)⊥Λ
)
= dimL+ rank

(
TN⊥Λ

)⊥Λ − rank
(
TL∩

(
TN⊥Λ

)⊥Λ
)

(23)

= dimL+(dimN− 2)− dim(L∩N) (24)

= n+ k− dim(L∩N) . (25)

From (22) and (25) we obtain

rank
(
TL∩TN⊥Λ

)
= n− k+ dim(L∩N) . (26)

Substituting in (21) yields dimπ(L∩N) = k− n.

9.4. t−vertical, z−horizontal reduction

Suppose i : N ↪→M is a t-vertical and z-horizontal coisotropic submanifold. This time we have

(TN)⊥Λ = Kerθ0,

since η0 = 0 implies dη0 = 0. We conclude that (TN)⊥Λ = TN∩Htz, which implies that

dimN/F = 1.

This means that reduction is trivial, leaving the trivial cosymplectic submanifold of
dimension 1:

Theorem 9.2. Let i : N ↪→M be a t-vertical, z-horizontal coisotropic submanifold of a cocon-
atct manifold (M,θ,η). Denote byF the maximal foliation defined by the distribution (TN)⊥Λ .
If N/F has a manifold structure such that the canonical projection π : N→ N/F defines a sub-
mersion, then N/F is one-dimensional and there exists and unique volume form θN on N/F
such that

i∗θ = π∗θN.

Remark 9.1. Given the triviality of reduction in the t-vertical and z-horizontal case, projection
of Legendrian submanifolds in M will always result in 0-dimensional Lagrangian submani-
folds in N/F .
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9.5. z−vertical, t−horizontal reduction

Let i : N→M be a z-vertical and t-horizontal coisotropic submanifold. It is easy to check that
this time we have the equality

TN= Kerdη0 ∩Kerη0.

Since Ht is integrable, we have that coisotropic reduction of N is actually happening in one
of the leaves of the foliation that inhertits a contact structure from the cocontact structure. We
conclude, from theorem 7.1:

Theorem 9.3. Let i : N→M be a z-vertical and t-horizontal coisotropic submanifold of a
cocontact manifold (M,θ,η). Denote by F the maximal foliation on N defined by the distribu-
tion TN⊥Λ . If N/F has a manifold structure such that the canonical projection π : N→ N/F
defines a submersion, then there exists an unique form ηN such that (N/F ,ηN) is a contact
manifold and

i∗η = π∗ηN.

9.5.1. Projection of Legendrian submanifolds

Proposition 9.4. Let L ↪→M be a Legendrian submanifold. If L and N have clean intersection
and LN = π(L∩N) is a submanifold in N/F , LN is Legendrian in (N/F ,θN).

Proof. It is clearly horizontal and, therefore, using lemma 7.2, it is isotropic. Now, supposing
k= dimN, we only need to check that

dimLN = k− n,

since dimN/F = 2(k− n)+ 1. This is straight-forward, following the same steps given in
proposition 9.3.

9.6. tz−horizontal reduction

Let i : N ↪→M be a tz-horizontal coisotropic submanifold. Since η0 = 0, dη0 = 0 and θ0 = 0,
we have

(TN)⊥Λ = TN,

wich implies that

dimN/F = 0,

leaving a trivial symplectic manifold, having as many points as path components of N. This
means that if N/F admits a manifold structure, it will be a symplectic manifold.

Remark 9.2. Proceeding as in the previous cases we immediately obtain that the projection of
Legendrian submanifolds is trivial.

10. Coisotropic reduction in stable Hamiltonian structures

There were several attempts to combine cosymplectic and contact structures. The first one
is due to Albert [3], using a combination of a 1-form and a 2-form; however, the setting is
not useful for us since the lack of integrability. The second attempt in this direction is due to
Acakpo [2], which is studied in this section.
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Definition 10.1 (Stable Hamiltonian structure). A stable Hamiltonian structure (SHS) is
a triple (M,ω,λ) where M is a 2n+ 1 dimensional manifold, ω is a closed 2-form and λ is a
1-form such that

λ∧ωn 6= 0, Kerω ⊆ Kerdλ.

There exists, just like in the previous cases, a natural isomorphism

[λ,ω : TM→ T∗M; vq 7→ ivqω+λ(vq) ·λ.

and its inverse ]λ,ω := [−1
λ,ω. Let us perform some calculations in coordinates. Since dω is

closed and of constant range 2n, around any point, there exists coordinates (qi,pi,z) such that

ω = dqi ∧ dpi

(see [30]). In this coordinate chart λ will have an expression of the form

λ= ai dq
i + bi dpi + cdz.

Since

0 6= λ∧ωn = cdz∧ωn,

we conclude that c 6= 0. Let ϕt(qi,pi,z) be the (local) flow of the vector field
1
c
∂

∂z
. Fix some

value z0, and define the map

ψ
(
qi,pi, t

)
:=

(
qi,pi,z

(
ϕt

(
qi,pi,z0

)))
.

It is clear that this defines a local diffeomorphism. Take the new set of coordinates to be(
qi,pi, t

)
:= ψ−1 ◦

(
qi,pi,z

)
.

We have

dz=
∂z
∂qi

dqi +
∂z
∂pi

dpi +
∂z
∂t

dt=
∂z
∂qi

dqi +
∂z
∂pi

dpi +
1
c
dt.

Therefore, in the new coordinate chart,

λ=

(
ai +

∂z
∂qi

)
dqi +

(
bi +

∂z
∂pi

)
dpi + dt.

We conclude:

Proposition 10.1. Around every point of M there exists a coordinate chart (qi,pi,z) such that

ω = dqi ∧ dpi,λ= ai dq
i + bi dpi + dz.

We call these coordinates Darboux coordinates.

In Darboux coordinates, the condition Kerdω ⊆ dλ translates to

∂ai
∂z

=
∂bi

∂z
= 0.

Also, the musical isomorphisms take the expression:

[λ,ω

(
∂

∂qi

)
= dpi + ai ajdq

j+ ai b
jdpj+ ai dz,

[λ,ω

(
∂

∂pi

)
=−dqi + bi ajdq

j+ bibjdpj+ bi dz,
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[λ,ω

(
∂

∂z

)
= ai dq

i + bi dpi + dz,

]λ,ω
(
dqi

)
=− ∂

∂pi
+ bi

∂

∂z
,

]λ,ω (dpi) =
∂

∂qi
− ai

∂

∂z
,

]λ,ω (dz) =
∂

∂z
+ ai

∂

∂pi
− bi

∂

∂qi
.

Imitating the definitions in the contact case, we can define a bivector field on M as

Λq (αq,βq) := ωq (]λ,ω (αq) , ]λ,ω (βq)) ,

and the morphism

]Λ : T∗M→ TM; αq 7→ iαqΛ

with the induced Λ-orthogonal complement for distributions

∆⊥Λ
q := ]Λ

(
∆0
q

)
.

In coordinates (qi,pi,z) the bivector field Λ takes the local form:

Λ =
∂

∂qi
∧ ∂

∂pi
+

(
ai
∂

∂pi
− bi

∂

∂qi

)
∧ ∂

∂z
.

We also have the distributions

i) Hq := Kerλq,
ii) Vq := Kerωq,

and the Reeb vector field Rq := ]λ,ω(λq). Locally,

H=

〈
∂

∂qi
− ai

∂

∂z
,
∂

∂pi
− bi

∂

∂z

〉
, (27)

V =

〈
∂

∂z

〉
, (28)

R=
∂

∂z
. (29)

A natural question to ask is wether the bivector field Λ arises from a Jacobi bracket. We
have

[Λ,Λ] = 2
∂

∂pi
∧
(
∂aj
∂qi

∂

∂pj
− ∂bj

∂qi
∂

∂qj

)
∧ ∂

∂z
− 2

∂

∂qi
∧
(
∂aj
∂pi

∂

∂pj
− ∂bj

∂pi

∂

∂qj

)
∧ ∂

∂z
.

Taking an arbitrary vector field

E= Xi
∂

∂qi
+Yi

∂

∂pi
+Z

∂

∂z
,

(Λ,E) defines a Jacobi structure if and only if

[Λ,Λ] = 2E∧Λ, [E,Λ] = 0.
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It is easily checked that the first equality holds when

∂aj
∂qi

− ∂ai
∂qj

=
∂bj

∂pi
− ∂bi

∂pj
= 0, (30)

∂bi

∂qj
−
∂aj
∂pi

= 0, i 6= j, (31)

∂bi

∂qi
− ∂ai
∂pi

= f, (32)

Xi = Yi = 0, (33)

Z= f, (34)

for certain local unique funtion f. It is easy to check that this relations translate intrinsically to

dλ= fω, E= fR.

Now, let us compute [E,Λ] for E= f
∂

∂z
.

[E,Λ] =

(
∂f
∂qi

− ai
∂f
∂z

)
∂

∂pi
∧ ∂

∂z
+

(
− ∂f
∂pi

+ bi
∂f
∂z

)
∂

∂qi
∧ ∂

∂z
.

Therefore, [E,Λ] = 0 if and only if

∂f
∂qi

− ai
∂f
∂z

=− ∂f
∂pi

+ bi
∂f
∂z

= 0. (35)

This is easily seen to be equivalent to

]λ,ω (df) ∈ V.

We have concluded the following:

Proposition 10.2. The bivector fieldΛ arises from a Jacobi structure if and only if there exists
some f ∈ C∞(M) such that

dλ= fω, ]λ,ω (df) ∈ V.

And, in that case, the Jacobi structure is defined by the pair (Λ, fR).

Remark 10.1. Notice that we recover the cosymplectic scenario when f = 0 and the contact
scenario when f = 1 (because the definition of Λ in contact geometry is the opposite of the
definition we gave in SHS).

Let us return to the study of coisotropic reduction. It is easy to see that ω induces a sym-
plectic form inH, ω|H. This induces the symplectic orthogonal for∆q ⊂Hq:

∆
⊥ω|H
q .= {v ∈Hq |ω (v,w) = 0∀w ∈∆q} .

A distribution∆ in M will be called:

i) Isotropic if∆⊆∆⊥Λ ;
ii) Coisotropic if ∆⊥Λ ⊆∆;
iii) Lagrangian if ∆⊥Λ =∆⊥Λ ∩H.

We have the following equality:
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Proposition 10.3. Let ∆ be a distribution on M. Then

∆⊥Λ = (∆∩H)
⊥ω|H .

Proof. The proof follows the same lines as that of proposition 5.3

Just like in previous sections, we say that a Lagrangian submanifold L ↪→M is horizontal if
TqL⊆Hq∀q ∈ L and say that it is non-horizontal if TqL 6⊆ Hq∀q ∈ L.We have the following
characterization:

Lemma 10.1. Let L ↪→M be an isotropic (or coisotropic) submanifold. We have

i) If L is horizontal and dimL= n, then L is Lagrangian.
ii) If L is non-horizontal and dimL= n+ 1, then L is Lagrangian.

Proof. The proof is similar to the proof of lemma 5.2, since we only need to check the condi-
tion at each tangent space.

Now, given a coisotropic submanifold N ↪→M (that is, (TqN)⊥Λ ⊆ TqN), the distribution
(TN)⊥Λ is not necessarily integrable and we shall assume it in what follows:

10.1. Gradient and Hamiltonian vector fields as Lagrangian submanifolds

We can define a symplectic structure on TM taking

Ω0 := [∗λ,ωΩM,

where ΩM is the canonical symplectic form on T∗M. In Darboux coordinates it has the expres-
sion:

Ω0 = dqj ∧ d
(
q̇iaiaj+ ṗib

iaj+ żaj− ṗj
)
+ dpj ∧ d

(
q̇iaib

j+ ṗib
ibj+ żbj+ q̇j

)
+ dz∧ d

(
q̇iai + ṗib

i + ż
)
.

Definition 10.2 (Gradient vector field). Given a Hamiltonian H ∈ C∞(M), define the gradi-
ent vector field of H as

gradH := ]λ,ω (dH) .

In Darboux coordinates, the gradient vector field is written

gradH=

(
∂H
∂pi

− bi
∂H
∂z

)
∂

∂qi
+

(
−∂H
∂qi

+ ai
∂H
∂z

)
∂

∂pi
+

(
bi
∂H
∂qi

− ai
∂H
∂pi

+
∂H
∂z

)
∂

∂z
.

It is easily checked that X :M→ TM is locally a gradient vector field if and only if X(M) is
a Lagrangian submanifold of (TM,Ω0). Indeed, we have the equality

X∗Ω0 =−d[λ,ω (X) .

When Λ comes from a Jacobi bracket on M, that is, when

dλ= fω, [fR,Λ] = 0,

for some function f onM, we have the Hamiltonian vector field of the Jacobi structure (Λ, fR):

XH = ]Λ (dH)+ fHR=−gradH+(R(H)+ fH)R.
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In Darboux coordinates it has the expression:

XH =

(
−∂H
∂pi

+ bi
∂H
∂qi

)
∂

∂qi
+

(
∂H
∂qi

− ai
∂H
∂z

)
∂

∂pi
+

(
ai
∂H
∂pi

− bi
∂H
∂qi

+ fH

)
∂

∂z
z.

Let us interpret the Hamiltonian vector field as a Lagrangian submanifold of TM, with some
symplectic form. First, observe that

X∗
HΩ0 =−d([λ,ω (dH)) =−d(R(H)λ+ fHλ) .

Therefore, defining the symplectic form

ΩH := Ω0 + d(R(H)λ+ fHλ)v ,

we have that XH defines a Lagrangian submanifold of (TM,ΩH).

10.2. Vertical coisotropic reduction

Theorem 10.1 (Vertical coisotropic reduction in stable Hamiltonian structures). Let i :
N ↪→M be a vertical coisotropic submanifold such that (TN)⊥Λ defines an integrable distri-
bution. Let F be the set of leaves and suppose that N/F admits a manifold structure such
that the canonical projection π : N→ N/F defines a submersion. If i∗dλ= 0 in TN∩H, then
N/F admits an unique stable Hamiltonian system structure (ωN,λN) such that π∗ωN = i∗ω
and π∗λN = i∗λ. The following diagram summarizes the situation:

Proof. The proof is similar to the the proof of theorem 5.1. Asking i∗dλ= 0 is necessary to
guarantee the well-definedness of λN in the quotient using

LXλ0 = iXdλ− 0+ diXλ0 = 0,

where λ0 = i∗λ. It would only remain to check that

Ker ωN ⊆ KerdλN.

Indeed, since KerωN = 〈RN 〉, and RN = π∗R, it follows from

π∗ (iRNdλN) = iRdλ= 0.

10.2.1. Projection of Lagrangian submanifolds. We have the result:

Proposition 10.4 (Projection of Lagrangian submanifolds). Let i : L ↪→M be a Lagrangian
submanifold. If L and N have clean intersection and π(L∩N) is a submanifold in N/F , then
it is Lagrangian.

Proof. The proof is similar to the the proof of propositions 5.5 and 5.6, since the proof reduces
to the study of each tangent space.
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10.3. Horizontal coisotropic reduction

Theorem 10.2 (Horizontal coisotropic reduction in stable Hamiltonian structures). Let
i : N→M be a coisotropic horizontal submanifold such that (TN)⊥Λ defines an integrable
distribution. Let F be the set of leaves of the foliation and suppose that N/F admits a man-
ifold structure such that the canonical projection π : N→ N/F defines a submersion. Then
N/F admits and unique symplectic structure ωN such that π∗ωN = i∗ω. The following dia-
gram summarizes the situation:

Proof. The proof is similar to the the proof of theorem 3.2.

10.3.1. Projection of Lagrangian submanifolds

Proposition 10.5 (Projection of Lagrangian submanifolds). Let L ↪→M be a Lagrangian
submanifold. If L and N have clean intersection and π(L∩N) is a submanifold in N/L, then
it is Lagrangian.

Proof. The proof is similar to the the proof of proposition 3.4 since we only need to check it
in every tangent space.

11. Conclusions

In this paper we have reviewed the concept of coisotropic and Lagrangian (and Legendrian)
submanifolds in different geometric settings. We have shown the connection of these geo-
metric constructions with the different dynamics that usually appear in mechanics. All these
different geometries (symplectic, cosymplectic, contact, cocontact) can be classified within
Jacobi geometry (in some case, Poisson, a particular case of Jacobi structure). This approach
allows in a simple way to see these particular situations from a more general point of view.
Sometimes it is important to stand at a certain altitude in order to realise that these particular
situations respond to the same geometrical pattern.

In each case we have introduced the notions of coisotropic and Lagrangian submanifold and
studied in detail the corresponding coisotropic reduction theorems. The interpretations of the
different types of vector fields in the different types of geometry as Lagrangian or Legendrian
submanifolds are summarized in table 1. Also, the results on coisotropic reduction are sum-
marized in table 2.
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Table 1. Interpretation of vector fields as Lagrangian or Legendrian submanifolds.

Geometry Vector field
Type of
submanifold Ambient manifold

Symplectic Hamiltonian Lagrangian (TM,ω0), symplectic
(M,ω) XH = ]ω(dH) ω0 = [∗ωωM

Cosymplectic Gradient Lagrangian (TM,Ω0), symplectic
(M,Ω,θ) gradH= ]θ,Ω(dH) Ω0 = [∗θ,ΩΩM

Hamiltonian Lagrangian (TM,ΩH), symplectic
XH = gradH−R(H)R ΩH =Ω0 +(d(R(H))∧ θ)v

Lagrangian (TM×R,ΩH,ds), cosymplectic
Evolution Lagrangian (TM,ΩH), symplectic
EH = gradH+R

Contact Gradient Lagrangian (TM,Ω0), symplectic
(M,η) gradH= ]η(dH) Ω0 = [∗ηΩM

Hamiltonian Lagrangian (TM,ΩH), symplectic
XH = gradH− (R(H)+H)R ΩH =Ω0 − d(R(H)η+Hη)v

Legendrian (TM×R, η̂), contact
η̂ = ηc+ tηv

Evolution Lagrangian (TM×R, Ω̃H), symplectic
EH = XH+HR Ω̃H =Ω0 − d(R(H)η)v

Cocontact Gradient Lagrangian (TM,Ω0), symplectic
(M,θ,η) gradH= ]θ,η(dH) Ω0 = [∗η,θΩM

Hamiltonian Lagrangian (TM,ΩH), symplectic
XH = grad(H)− (Rz(H)+H)Rz ΩH =Ω0 − d(Rz(H)η+Hη)v

+(1−Rt(H))Rt +d(θ−Rt(H)θ)v

Legendrian (TM×R×R, θ̃, η̃), cocontact
η̃ = ηc+ sηv+ θc+ eθv

θ̃ = θc

SHS Gradient Lagrangian (TM,Ω0), symplectic
(M,ω,λ) gradH= ]λ,ω(dH) Ω0 = [∗λ,ωΩM

If dλ= fω, Hamiltonian Lagrangian (TM,ΩH), symplectic
]λ,Ω(df) ∈ V XH =−gradH+(R(H)+ fH)R ΩH =Ω0 + d(R(H)λ+ fHλ)v
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Table 2. Summary of results on coisotropic reduction.

Coisotropic submanifold Projection of Lagrangian
Geometry N ↪→M Resulting manifold and Legendrian submanifolds

Symplectic Arbitrary (N/F ,ωN), symplectic L Lagrangian =⇒ LN Lagrangian
Cosymplectic Vertical (N/F ,θN,ΩN),

cosymplectic
L Lagrangian =⇒ LN Lagrangian

Horizontal (N,ΩN), symplectic L Lagrangian =⇒ LN Lagrangian
Arbitrary Foliation consisting of

symplectic
manifolds of N/F

Contact Vertical (N/F ,ηN), contact L Legendrian =⇒ LN Legendrian
Horizontal dimN/F = 0

Cocontact tz-vertical (N/F ,θN,ηN), cocontact L Legendrian =⇒ LN Legendrian
t-vertical, z-horizontal dimN/F = 1, θN ̸= 0
z-vertical, t-horizontal (N/F ,ηN), contact L Legendrian =⇒ LN Legendrian
tz-horizontal dimN/F = 0

SHS Vertical (N/F ,ωN,λN), stable
Hamiltonian

L Lagrangian =⇒ LN Lagrangian

Horizontal (N/F ,ωN), symplectic L Lagrangian =⇒ LN Lagrangian
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