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Abstract

The aim of this paper is to extend the coisotropic embedding theorem obtained by M. J.
Gotay for pre-symplectic manifolds to more general geometric settings: cosymplectic, contact,
cocontact, k-symplectic, k-cosymplectic, k-contact, and multisymplectic manifolds. The results
are obtained by applying a generic methodology, which gives more relevance to the potential
applications. In that sense, this paper gives the fundamental basis to be able to apply the results
to the so-called regularization problem of singular Lagrangian systems, both in mechanics and
in classical field theories.
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1 Introduction
Symplectic geometry is the natural framework for developing Hamiltonian mechanics. Indeed, the
phase space of a classical Hamiltonian system is the cotangent bundle T∗ Q of the configuration
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manifold Q, which is endowed with a canonical symplectic structure ωQ. The solutions of the
Hamilton equations are then the integral curves of the Hamiltonian vector field XH obtained from
the Hamiltonian energy H using the canonical symplectic form ωQ. In the case of Lagrangian
mechanics, the velocity space is the tangent bundle TQ of the configuration manifold. In this
case there is no canonical symplectic structure, but we can construct a 2-form usually denoted
by ωL from the Lagrangian function L and using the so-called almost-tangent geometry of the
tangent bundle. In the latter case, if the Lagrangian is regular (which is usual for Lagrangians
appearing in mechanics), then ωL is symplectic and the corresponding Hamiltonian vector field for
the energy of L is a Second Order Differential Equation (SODE) whose solutions are just the ones
of the Euler-Lagrange equations determined by the Lagrangian (see [1, 25, 36]).

This geometrical description of mechanics is valid when the Hamiltonian or the Lagrangian does
not explicitly depend on time; if it does, we must consider the spaces R × T∗ Q and R × TQ,
respectively. Now, the geometric structures we must use to obtain the dynamics are the so-called
cosymplectic structures [2, 8, 25, 29]. A cosymplectic structure on a manifold M is a pair (η, ω)
where η is a closed 1-form and ω is a closed 2-form, such that η ∧ ωn ̸= 0, where the dimension of
M is precisely 2n+ 1.

Other interesting systems are the so-called Lagrangian systems with Lagrangian functions depend-
ing on the action. To obtain the equations of motion, one needs to extend the usual Hamilton
principle to the so-called Herglotz principle [6, 7, 17]. The geometric versions are developed on
T∗ Q × R and TQ × R for the Hamiltonian and Lagrangian cases, respectively. The geometry
behind these systems is provided by a contact form, say, a 1-form η such that η ∧ dηn ̸= 0 [18] (see
also [15, 35] for an extension to classical field theories).

Finally, another step is the geometric description of classical field theories, based on the so-called
multisymplectic geometry [5, 22, 24, 40, 41, 56]. Multisymplectic geometry has emerged as a
fundamental framework for the geometric description of Field Theories, extending the role that
symplectic geometry plays in Classical Mechanics. Alternative approaches to classical Field
Theories uses completely different geometric structures, namely, k-symplectic, k-cosymplectic and
k-contact structures [26, 34, 57]).

As well as symplectic geometry has allowed us to obtain new results in mechanics, such as symplectic
reduction, the various generalizations of Noether’s theorem, study of stability, development
of geometric integrators, coisotropic reduction, coisotropic regularization, among many others,
something similar occurs in the other geometric scenarios mentioned above, although the extensions
are in many cases not as direct as they might seem at first glance.

A very useful tool in symplectic geometry, which is crucial for the problem of coisotropic
regularization mentioned above, is the so-called coisotropic embedding theorem. If N is a submanifold
of a symplectic manifold (M,ω), we say that it is coisotropic if TN⊥ ⊂ TN , where TN⊥ is the
symplectic complement of TN in the tangent bundle TM . On the other hand, a pre-symplectic
manifold is a pair (M,ω) where ω is closed but not of maximal rank (if the rank is maximal, then
it is a symplectic manifold). The coisotropic embedding theorem, proved by M. J. Gotay in [37],
states that any pre-symplectic manifold can be coisotropically embedded in a symplectic manifold
(see also [53, 59]). The existence is unique up to symplectomorphisms of a neighborhood of the
embedded submanifold (this result lies on previous ones by A. Weinstein [69, 70]).

The coisotropic embedding theorem, beyond its intrinsic mathematical interest, has proven to be a
powerful tool with numerous applications in mathematical physics. For instance, it is crucial for
extending the celebrated Noether’s theorem to constrained mechanical systems. In this context, it
allows for the formalization of a one-to-one correspondence between the system’s symmetries and
its constants of motion, even in the presence of a pre-symplectic structure [10].
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Another area of great relevance is the study of field theories, where the transition from a pre-
symplectic to a symplectic space of solutions—guaranteed by an infinite-dimensional version of
the theorem—is a fundamental step in defining a well-posed Poisson structure. This approach has
been successfully applied to various theories, including gauge theories and the Palatini formulation
of General Relativity [11, 12, 13].

The theorem has also been used by one of the authors of the present paper for tackling the inverse
problem of the calculus of variations. Indeed, it has been employed to construct variational
principles for classes of implicit differential equations for which a Lagrangian formalism is not
immediately apparent [62, 63].

The theorem also plays an essential role in the Geometric Quantization program. Since the
quantization procedure requires a symplectic manifold as a starting point, the embedding of a
pre-symplectic manifold (which typically describes a classical system with constraints) into a larger
symplectic one is an indispensable prerequisite for quantizing such systems [39].

As a last application of the theorem, we mention the so-called problem of regularization. Indeed, if
a Lagrangian function is not regular (this happens in several physical theories), the corresponding
2-form ωL is pre-symplectic (assuming some regularity condition on the rank). For this kind
of Lagrangian functions, P. A. M. Dirac and P. G. Bergmann developed a constraint algorithm
(the so-called Dirac-Bergmann algorithm [3, 30]) settled respectively in the Hamiltonian and the
Lagrangian formalisms, and that has been geometrized by M. J. Gotay, J. N. Nester and G. Hinds
[38, 42, 43]. The algorithm produces a sequence of constraint submanifolds just to find a final
constraint submanifold that, for theories admitting gauge symmetries, is a pre-symplectic manifold.
At this stage, one can use the coisotropic embedding theorem to embed the final constraint manifold
in a larger symplectic one in such a way that the corresponding dynamics are conveniently related
(see A. Ibort and J. Marín-Solano [49]).

With this last application of the coisotropic embedding theorem in mind, it is clear that, extending
both Dirac-Bergmann algorithm and the coisotropic embedding theorem would be crucial to
address the problem of classifying and regularizing singular Lagrangians in all the geometric
frameworks described in this introduction.

An extension of the Dirac-Bergmann constraint algorithm for singular time-dependent Lagrangian
systems exists and has been developed by D. Chinea, M. de León and J. C. Marrero [9]. To be able
to achieve a regularization for singular Lagrangians depending on time of the type of [49], it
is clear that the first, obvious, step should be extending the coisotropic embedding theorem to
the cosymplectic scenario. This is one of the generalizations achieved in the present paper. The
application of the above results to the case of singular time-dependent Lagrangian systems is the
subject of a forthcoming paper in elaboration.

On the other hand, singular classical field theories have been recently considered in the multi-
symplectic setting (see [21, 22, 31] and references therein). We plan to obtain a classification of
Lagrangians on the space of 1-jets of the configuration bundle, similar to the one obtained in [49],
using the operator introduced by D. Saunders [58] from a chosen volume form on the space-time
manifold (the base of the configuration bundle), and to study the regularization problem for
singular classical field theories in a forthcoming paper.

A similar problem arises for singular classical field theories described by means of the so-called
k-symplectic [45], k-cosymplectic [46], and k-contact [47] formulations.

In the present paper, we make one of the steps described above that are necessary to classify
and regularize singular Lagrangians in all the geometric pictures mentioned, namely we extend
the approach introduced in [60] (obtained building upon the alternative proof of the classical
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coisotropic embedding theorem of [61]) for the construction of multisymplectic thickenings of
pre-multisymplectic manifolds, to all the other geometric scenarios mentioned above. This
approach uses the notion of almost product structure (a decomposition of the tangent bundle on
complementary distributions) and provides a systematic way to discuss both the existence and the
uniqueness of coisotropic embeddings in all the cases mentioned.

In the multisymplectic case, the opposite direction, namely the study of coisotropic reduction has
been considered in [28].

This paper is structured as follows. In Section 2 we develop all the mathematical background on
the geometric notions that are necessary to develop the theory, namely, distributions, Frobenius
Theorem and almost product structures. In Section 3 we recall the main results in the case of pre-
symplectic manifolds, but the proofs follow the methodology of [60] that we will adopt throughout
the whole paper. The geometries characterized by the existence of Reeb vector fields, namely,
pre-cosymplectic manifolds, pre-contact manifolds, and pre-cocontact manifolds, are discussed
in Section 4, Section 5 and Section 6. The results in Section 3, Section 4, and Section 5 are then
generalized to the k-pre-symplectic manifolds, k-pre-cosymplectic manifolds, and k-pre-contact
manifolds in Section 7, Section 8, and Section 9. Finally, in Section 10 we recall the case of
multisymplectic geometry already analyzed in [60], now enriched with a discussion on uniqueness.

The order of presentation of the various sections has been guided by the increasing difficulty
in proving the uniqueness of coisotropic embeddings. Indeed, uniqueness only holds in the
pre-symplectic case; nevertheless, for geometries modelling classical mechanics (time-dependent,
dissipative, or both), namely, pre-cosymplectic, pre-contact, and pre-cocontact geometry, we will
be able to prove that coisotropic embeddings must have fixed topology (so that any two such
embeddings are diffeomorphic, but not necessarily co-symplectomorphic, contactomorphic, or co-
contactomorphic). Furthermore, we will prove that it is sufficient and necessary for two embeddings
to be neighborhood equivalent that the corresponding Reeb vector fields are proportional. These
statements no longer hold for geometric structures modelling field theories, namely, in the cases
of k-pre-symplectic, k-pre-contact, and multisymplectic geometries, as the generality needed
translates into the existence of a plethora of different coisotropic embeddings. Our methodology,
in these cases, will be to study uniqueness by fixing the local model of the thickening. In all the
cases considered, we will give one model that allows for uniqueness, and one where uniqueness
does not necessarily hold.

Finally, we mention some conclusions and future work.

2 Preliminaries
In this section, we will recall the basic notions that we will use in the rest of the paper.

2.1 Distributions and Frobenius theorem
Definition 2.1 (Distribution). Let M be a smooth d-dimensional manifold. A distribution D on M is an
assignment to each point m ∈ M of a linear subspace Dm ⊂ TmM . The distribution is said to be smooth if
for every m ∈ M there exists an open neighborhood Um ⊂ M of m and a collection of smooth vector fields
X1, . . . , Xr ∈ X(Um) satisfying

Dn = span{X1(n), . . . , Xr(n)}, for all n ∈ Um.

The integer r is the local rank of the distribution on Um.
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Remark 2.2. If the local rank of a smooth distribution is not constant across the manifold, the distribution
is called a singular distribution. In this work, however, we will primarily focus on constant-rank
distributions, also referred to as regular distributions, i.e., those for which the integer r is the same for
every point m ∈ M . In this case,

D :=
⊔
m∈M

Dm , (1)

defines a smooth rank-r subbundle of the tangent bundle TM . More specifically, all distributions considered
in this work will arise as the kernel of a differential form of constant rank

Dm = kerωm , (2)

for some ω ∈ Ωk(M) with constant rank, or as intersections of kernels of differential forms of this type.
Equivalently, it can be interpreted as a smooth section of the r-th Grassmann bundle Gr(TM) → M , that is,
the fiber bundle over M whose fiber at each point m ∈ M is the Grassmannian G(r, TmM), i.e., the manifold
of all r-dimensional linear subspaces of the tangent space TmM .
Definition 2.3 (Integral manifold). Let D be a smooth distribution on a smooth manifold M . An
integral manifold of D is a connected immersed submanifold

i : N ↪→ M , (3)

such that
i∗(Xn) ∈ Di(n) , ∀n ∈ N, and ∀Xn ∈ TnN. (4)

Definition 2.4 (Integrable distribution). A smooth distribution D on a smooth manifold M , is said to be
integrable if, for every point m ∈ M , there exists an integral manifold N ⊂ M passing through m such
that TnN = Dn for all n ∈ N .
Definition 2.5 (Smooth foliation). Let M be a smooth d-dimensional manifold. A smooth foliation
of rank r (or codimension d − r) on M is a decomposition of M into a union of connected immersed
submanifolds {Lj}j∈J (J denoting an index set), called leaves, such that for every point m ∈ M , there
exists a coordinate chart (Um, φ)

φ : Um → Rd : m 7→ φ(m) = (x1, ..., xl, z1, ..., zr) , (5)

with l = d− r, satisfying:

1. For every leaf Lj , the connected components of Lj ∩ U are mapped by φ to sets of the form

φ(Lj ∩ U) = {(c1, ..., cl, z1, ..., zr) ∈ Rd}, (6)

for some constants c1, . . . , cl ∈ R.

2. The local coordinate vector fields on U {
∂

∂z1 , . . . ,
∂

∂zr

}
, (7)

span a smooth rank-r distribution D ⊂ TU , which coincides with the tangent spaces to the leaves.

We refer to such charts as foliated charts.
Remark 2.6. Smooth foliations of constant rank described in Definition 2.5 are also referred to as regular
foliations.
Definition 2.7 (Completely integrable distribution). A smooth distribution D of constant rank on a
smooth manifoldM is said to be completely integrable if it is integrable and its maximal integral manifolds
define a smooth foliation of M .
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Theorem 2.8 (Frobenius Theorem). Let D be a smooth rank-r distribution on a smooth manifold M . The
following statements are equivalent:

1. Involutivity: For all vector fields X, Y ∈ X(M) belonging, at each m ∈ M , to Dm, the Lie bracket
[X, Y ] belongs, at each m ∈ M , to Dm.

2. Complete integrability: The distribution D is completely integrable.

3. Local triviality: Around each point m ∈ M , there exist local coordinates (x1, ..., xl, z1, ..., zr)
defined on a neighborhood Um ∋ m such that

Dn = span
{
∂

∂z1 , . . . ,
∂

∂zr

} ∣∣∣∣∣∣
n

for all n ∈ Um .

Proof. See [68]

Frobenius Theorem has an alternative version using differential forms.

Indeed, let Do be the annihilator of D, that is, the space of 1-forms on M vanishing on D. We can
construct an ideal of the algebra of differential forms on M by defining

I(Do) = {α ∧ β,where β ∈ Do}

Then, we have the following result.
Theorem 2.9. D is involutive if and only if I(Do) is differential ideal, that is,

d(I(Do)) ⊂ I(Do).

Proof. See [68]
Remark 2.10. When a smooth distribution D on a smooth manifold M arises as the kernel of a differential
k-form ω ∈ Ωk(M) of constant rank, the involutivity of D is equivalent to the condition

dω ∈ I2(ker ω) , (8)

where I(ker ω) is the ideal generated by the annihilator of ker ω, and its second power I2(ker ω) is defined
as

I2(ker ω) =

∑
i,j

αi ∧ βj , for αi, βj ∈ I(ker ω)

 . (9)

For k = 1 this condition coincides with
dω ∧ ω = 0 . (10)

The Frobenius theorem provides a complete picture for constant-rank distributions. For com-
pleteness, we now briefly consider the more general case of singular distributions. This requires
introducing the concept of a singular foliation.
Definition 2.11 (Singular foliation). Let M be a smooth d-dimensional manifold. A singular foliation
on M is a partition of M into a disjoint union of connected, immersed submanifolds {Lj}j∈J , called leaves,
which may have varying dimensions. This partition defines a singular distribution D by setting, for each
m ∈ M ,

Dm = TmLj , where m ∈ Lj . (11)

We say that the foliation is generated by the distribution D.
Theorem 2.12 (Stefan-Sussmann’s Theorem). Let D be a singular distribution on a smooth manifold M ,
generated by a family of smooth vector fields F ⊆ X(M). The following statements are equivalent:
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1. Involutivity: The set of all smooth vector fields that are sections of D, denoted Γ(D), forms a Lie
subalgebra of X(M). That is, for any two vector fields X, Y ∈ Γ(D), their Lie bracket [X, Y ] is also in
Γ(D).

2. Integrability: For each pointm ∈ M , there exists a unique maximal, connected, immersed submanifold
(the leaf) passing through m that is an integral manifold of D.

3. Foliation: The distribution D generates a singular foliation on M , whose leaves are the maximal
integral manifolds from the previous point.

Proof. See [64, 65]

2.2 Moser’s trick and relative Poincaré Lemma
The following strategy, often referred to as Moser’s trick, was originally given by Jürgen Moser
in 1965 to check when two volume forms are equivalent [55], but its main applications are in
symplectic geometry. It is the standard argument for the modern proof of Darboux’s theorem, as
well as for the proof of Darboux-Weinstein theorem and other normal form results [69]. It will be
relevant to discuss the uniqueness of coisotropic embeddings.
Theorem 2.13 (Moser’s Trick). Let M be a manifold, and let ω0, ω1 ∈ Ωk(M) be two differential a-forms.
If there exists a complete time-dependent vector field Xt ∈ X(M) such that

ω1 − ω0 + £Xt(tω1 + (1 − t)ω0) = 0 ,

then, there exists a diffeomorphism ψ : M → M satisfying ψ∗ω1 = ω0.

Proof. Let ψt : M → M be the flow of the vector field Xt, such that ψ0 = idM . We will show that
its time-one map, ψ := ψ1, satisfies ψ∗ω1 = ω0.

To do this, we follow the "trick" of showing that the family of forms ωt := ψ∗
t (tω1 + (1 − t)ω0) (that

coincides with ω0 for t = 0 and with ω1 for t = 1) is constant for all t ∈ [0, 1].

Indeed,

d
dtψ

∗
t (ωt) = d

dt (ψ∗
t (tω1 + (1 − t)ω0))

= ψ∗
t (LXt(tω1 + (1 − t)ω0) + (ω1 − ω0)) ,

and the last line vanishes by assumption, so that it satisfies ψ∗
tωt = ψ∗

0ω0 = ω0, for t ∈ [0, 1] Taking
t = 1 we obtain the desired diffeomorphism.

Lastly, we add the proof of the Relative Poincaré Lemma, which we use several times throught our
study:
Theorem 2.14 (Relative Poincaré Lemma). Let i : N ↪→ M be an immersed submanifold and let ω be a
closed k-form on M that vanishes on N . Then, there is a neighborhood U of N in M and an (k − 1)-form θ
on M that vanishes on N such that ω = dθ.

Proof. LetU be a tubular neighborhood ofN inM , endowed with a surjective submersion π : U → N
and a vector bundle structure. Let ∆ denote the Liouville vector field. Define, for t ∈ [0, 1] the
1-parameter family of maps

ψt : U → U , ψt(u) := t · u .
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Let ∆t := dψt

dt . Now, integrating d
dt (ψ∗

tω) we have the following:

ψ∗
1ω − ψ∗

0ω =
∫ 1

0

d
dt (ψ∗

tω) dt =
∫ 1

0
ψ∗
t£∆tωdt

=
∫
ψ∗
t (di∆tω + i∆tdω) dt =

∫ 1

0
dψ∗

t i∆tωdt

= d
∫ 1

0
ψ∗
t i∆tωdt .

Notice that ψ∗
1ω = ω, and that ψ∗

0ω = π∗ω|N = 0, since ω vanishes at N . Now, it is clear that if we
define

θ :=
∫ 1

0
ψ∗
t i∆tωdt ,

we have ω = dθ. It only remains to notice that θ also vanishes at N , since ∆ does as well.

2.3 Differential calculus and almost product structures
In this section, we will recall the notion of almost product structure introduced by A. G. Walker [67]
and T. Fukami [33], and extensively studied in the sixties of the past century. We will follow the
approach in [25]. An interpretation in terms of G-structures can be found in [32].
Definition 2.15 (Almost product structure). Let M be a smooth d-dimensional manifold. An almost
product structure on M is a choice of two smooth distributions H,V of constant rank, sometimes called the
horizontal and vertical distributions, such that

TmM = Hm ⊕ Vm , ∀ m ∈ M , (12)

or
TM = H ⊕ V , (13)

in terms of the Whitney sum of vector bundles.
Remark 2.16. In this work, we will only consider almost product structures in which one of the two
distributions, say V , arises as the kernel of a differential k-form of constant rank, or as the intersection of
kernels of k-forms, and is completely integrable. The complementary distribution H is then chosen so that
TM = H ⊕ V .

Given an almost product structure TM = H ⊕ V , one can define a (1, 1)-tensor field P such that

P 2 = P ,

Im(P ) = V ,
ker(P ) = H ,

(14)

namely the projection onto V . Conversely, any such tensor defines an almost product structure
with horizontal and vertical distributions given by its image and kernel, respectively.

Thus, given a smooth completely integrable distribution V on M of rank r, there is a one-to-one
correspondence between:

• smooth (1, 1)-tensor fields P on M satisfying P 2 = P and Im(P ) = V ;

• smooth distributions H on M such that H and V provide an almost product structure.

In particular, in the foliated chart associated with the completely integrable distribution V , where

V = span
{
VA := ∂

∂zA

}
A= 1,..., r

, (15)
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the (1, 1)-tensor P reads

P = (dzA − PA
a dxa) ⊗ VA =: PA ⊗ VA , a = 1, ..., l; A = 1, ..., r , (16)

where PA
a are smooth functions on M , whose kernel reads

kerP = span
{
Ha := ∂

∂xa
+ PA

a

∂

∂zA

}
a= 1,..., l

=: H . (17)

Remark 2.17. Note that, given an almost product structure (V , H) on a smooth manifold M defined by the
(1, 1)-tensor P as V = ImP , H = kerP , one can always define the opposite tensor R := 1−P providing
the opposite almost product structure TM = H ⊕ V , since

V = kerR = ImP ,

H = ImR = kerP .
(18)

In the system of foliated charts associated with V , R reads

R = dxa ⊗Ha . (19)

Proposition 2.18 (Splitting of the cotangent bundle). Any almost product structure (V , H) provided
by the (1, 1)-tensor P over a smooth manifold M , provides a splitting of the cotangent bundle T∗M of the
type

T∗M = V∗ ⊕ H∗ , (20)
for V∗ and H∗ the subbundles of T∗M dual to V and H.

Proof. Consider a differential 1-form α on M , namely a section of T∗M . Given the almost product
structure (V , H) given by the (1, 1)-tensor P , α decomposes as

α = α
∥
P + α⊥

P , (21)

where
α

∥
P := α ◦ P , (22)

and
α⊥
P := α− α

∥
P . (23)

In the system of foliated charts associated with the (completely integrable) distribution V = kerP ,
decomposition (21) for a differential 1-form

α = αadxa + αAdzA , (24)

reads

α
∥
P = α ◦ P = αAP

A ,

α⊥
P = α− α

∥
P =

(
αa + PA

a αA
)

dxa .
(25)

Note that, by definition, α∥
P belongs to the image of the (1, 1)-tensor P when it acts upon differential

forms. We will denote by P ∗ such action. On the other hand, α⊥
P belongs to the kernel of P ∗. Thus,

the discussion above may be resumed by saying that the cotangent bundle T∗M splits as the direct
sum of two subbundles, say

V∗ := ImP ∗ ⊂ T∗M ,

H∗ := KerP ∗ ⊂ T∗M ,
(26)
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such that
T∗M = V∗ ⊕ H∗ . (27)

It is straightforward to check that V∗
m can be identified with the dual vector space of Vm at each

m ∈ M , as well as H∗
m can be identified with the dual vector space of Hm for each m ∈ M .

Remark 2.19. Also in this case the opposite (1, 1)-tensor R = 1 − P , provides the opposite splitting

T∗M = H∗ ⊕ V∗ , (28)

since

V∗ = KerR∗ = ImP ∗ ,

H∗ = ImR∗ = KerP ∗ .
(29)

Proposition 2.20 (Splitting of the bundle of k-forms). Any almost product structure (V , H) provided
by the (1, 1)-tensor P over a smooth manifold M , provides a splitting of the bundle of k-forms Λk(M) of the
type

Λk(M) = Λk∥
P (M) ⊕ Λk⊥

P (M) , (30)

for Λk∥
P (M) and Λk⊥

P (M) two smooth subbundles of Λk(M).

Proof. Decomposition (21) holds for any k-form on M , where

α
∥
P := α(P ( · ), ..., , P ( · )) ,
α⊥
P := α− α

∥
P .

(31)

To look at the local expression of such decomposition, consider a differential k-form α expressed in
the basis {

dxa, PA
}
a=1,...,l;A=1,...,r

, (32)

say

α =αA1...Ak
PA1 ∧ ... ∧ PAk+

αa1A2...Ak
dxa1 ∧ PA2 ∧ ... ∧ PAk+

...
αa1...ak

dxa1 ∧ ... ∧ dxak .

(33)

A straightforward computation shows that

α
∥
P = αA1...Ak

PA1 ∧ ... ∧ PAk , (34)

and
α⊥
P = αa1A2...Ak

dxa1 ∧ PA2 ∧ ... ∧ PAk + ...+ αa1...ak
dxa1 ∧ ... ∧ dxak . (35)

We will denote the splitting of the bundle Λk(M) induced by such decomposition of k-forms as

Λk(M) = Λk∥
P (M) ⊕ Λk⊥

P (M) . (36)
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Remark 2.21. In this case, the splitting induced by the opposite almost product structure R = 1 − P does
not coincide with the opposite of (36). Indeed, a direct computation shows that

α
∥
R = αa1...ak

dxa1 ∧ ... ∧ dxak , (37)

while

α⊥
R =αA1...Ak

PA1 ∧ ... ∧ PAk+
αa1A2...Ak

dxa1 ∧ PA2 ∧ ... ∧ PAk+
...
αa1...ak−1Ak

dxa1 ∧ ... ∧ dxak−1 ∧ PAk .

(38)

We will denote the splitting of the bundle Λk(M) induced by such decomposition of k-forms as

Λk(M) = Λk∥
R(M) ⊕ Λk⊥

R(M) . (39)

Remark 2.22. Generally, given an almost product structure on a manifold M , TM = V ⊕ H, the direct
sum decomposition proved in Proposition 2.18, T∗ M = V∗ ⊕ H∗ gives a more general decomposition

Λk(M) =
k⊕
j=0

ΛjV∗ ⊗ Λk−jH∗ ,

where ΛjV∗ denotes j-times the wedge product of V∗ with itself. In terms of this decomposition, we may
consider the following identifications:

Λk∥
P (M) = ΛkV∗ , Λk⊥

P (M) =
k−1⊕
j=0

ΛjV∗ ⊗ Λk−jH∗.

Definition 2.23 (Nijenhuis tensor of an almost product structure). Let P be a (1, 1)-tensor field on
a smooth manifold M defining an almost product structure. The Nĳenhuis tensor associated to P is the
(1, 2)-tensor NP defined by

NP (X, Y ) := [P (X), P (Y )] − P
(

[P (X), Y ] + [X,P (Y )] − P ([X,Y ])
)
, (40)

for all vector fields X, Y ∈ X(M).

Using the foliated charts associated with the distribution V = ImP , whose coordinates read (xa, zA), the
Nĳenhuis tensor NP reads

NP =
(
∂PA

b

∂xa
− ∂PA

a

∂xb
+ PB

a

∂PA
b

∂zB
− PB

b

∂PA
a

∂zB

)
dxa ∧ dxb ⊗ ∂

∂zA
+ ∂PA

a

∂zB
dxa ∧ PB ⊗ ∂

∂zA
(41)

Definition 2.24 (Integrable Almost Product Structure). An almost product structure P is said to
be integrable if the two complementary distributions it defines are both involutive. By the Frobenius
Theorem, this is equivalent to the existence of local coordinate charts, called foliated charts, adapted to both
distributions simultaneously.

There is an interesting characterization in terms of the Nĳenhuis tensor.
Theorem 2.25. An almost product structure is integrable if and only if its Nĳenhuis tensor vanishes.

Proof. See [25]
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3 Pre-symplectic manifolds
Definition 3.1 (Pre-symplectic manifold). A pre-symplectic manifold is a pair (M,ω) where M is a
smooth d-dimensional manifold, and ω ∈ Ω2(M) is a closed differential 2-form.
Remark 3.2. We will always assume the form ω to have constant rank, i.e., the dimension of Im(ω♭m) ⊂ T ∗

mM
to be constant for all m ∈ M , where

ω♭ : TM → T∗M : X 7→ ω♭(X)(·) := ω(X, ·) . (42)

Definition 3.3. The distribution
V := kerω ⊂ TM (43)

is called the characteristic distribution of ω.
Remark 3.4 (Symplectic manifold). When dim Im(ω♭m) = d , ∀ m ∈ M , the map ω♭ is a vector bundle
isomorphism between TM and T∗M whose inverse reads

ω♯ : T∗M → TM : α 7→ ω♯(α) s.t. ω(ω♯(α), X) = α(X) , ∀α ∈ Ω1(M), X ∈ X(M) , (44)

and the pair (M, ω) is referred to as a symplectic manifold. Note that symplectic manifolds are always
even-dimensional.
Theorem 3.5 (Darboux theorem for symplectic manifolds). Let (M,ω) be a 2n-dimensional symplectic
manifold. Then, for every pointm ∈ M , there exists a coordinate chart (U,φ) centered atm, with coordinates
(q1, . . . , qn, p1, . . . , pn), such that the symplectic form ω reads

ω|U = dqa ∧ dpa . (45)

Such coordinates are called Darboux coordinates for the symplectic form ω around the point m.

Proof. See [1, 36, 52].
Theorem 3.6 (Darboux theorem for pre-symplectic manifolds). Let (M,ω) be a d-dimensional pre-
symplectic manifold, with ω ∈ Ω2(M) a closed 2-form of constant rank 2r < d. Then, for every pointm ∈ M ,
there exists a coordinate chart (U,φ) around m, with coordinates (q1, . . . , qr, p1, . . . , pr, z

1, . . . , zd−2r), such
that the 2-form ω reads

ω|U = dqa ∧ dpa . (46)

Again, such coordinates are called Darboux coordinates for the pre-symplectic form ω around the point m.
In the system of Darboux coordinates, the characteristic distribution of ω is spanned by the vector fields

V = kerω = span
{

∂

∂zA

}
A=1,...,d−2r

. (47)

Thus, Darboux coordinates for the pre-symplectic form ω are foliated charts for the foliation associated with
the characteristic distribution.

Proof. See [36].

3.1 Coisotropic submanifolds
Definition 3.7 (Symplectic ortogonal). Let (M,ω) be a symplectic manifold, and let Wm ⊆ TmM be a
linear subspace of the tangent space at a point m ∈ M . The symplectic orthogonal of Wm with respect to
ω is the subspace

W⊥ω
m := {X ∈ TmM : ω(X, Y ) = 0 ∀Y ∈ W } . (48)

13



Definition 3.8 (Coisotropic submanifold of a symplectic manifold). Let (M,ω) be a symplectic
manifold and let

i : N ↪→ M (49)
be an immersed submanifold. We say that N is a coisotropic submanifold of (M,ω) if, for every point
n ∈ N , the symplectic orthogonal of the tangent space TnN satisfies

(TnN)⊥ω ⊆ TnN . (50)

Remark 3.9. Coisotropic submanifolds appear naturally when we are dealing with the question of finding an
embedding of a pre-symplectic manifold (M,ω) into a symplectic manifold (M̃, ω̃) of minimal dimension.
Indeed, if we denote by V|x the characteristic distribution of ω, for every x ∈ M , we have V ⊆ (TxM)⊥ ⊆
Tx M̃ . Such an embedding has minimal dimension only when V = (TxM)⊥, which is precisely the
coisotropicity condition.

3.2 Coisotropic embeddings
3.2.1 Existence

Theorem 3.10 (Symplectic thickenings for pre-symplectic manifolds). Let (M, ω) be a pre-symplectic
manifold. There always exists a symplectic manifold (M̃, ω̃) and an embedding

i : M ↪→ M̃ , (51)

such that i(M) is a closed coisotropic submanifold of M̃ . The symplectic manifold (M̃, ω̃) is referred to as
symplectic thickening of (M, ω).

Proof. Let V be the characteristic distribution on M . Consider a complementary distribution H
providing an almost product structure on M associated with the (1, 1)-tensor P on M that, in the
system of Darboux coordinates on M as in Theorem 3.6, reads

P =
(

dzA − Pq
A
a dqa − Pp

Aadpa
)

⊗ ∂

∂zA
. (52)

The opposite (1, 1)-tensor R reads

R = 1 − P = dqa ⊗
(

∂

∂qa
+ Pq

A
a

∂

∂zA

)
+ dpa ⊗

(
∂

∂pa
+ Pp

Aa ∂

∂zA

)
. (53)

Consider the bundle Λ1⊥
R(M) over M . Denote by τ the projection map onto M . Its sections are

differential 1-form that, in the system of Darboux coordinates, looks like

α = αAP
A . (54)

Thus, a system of adapted coordinates on Λ1⊥
R(M), reads{

qa, pa, z
A, µA

}
a=1,...,r
A=1,...,l

, (55)

with l = d− 2r. The projection map τ thus reads

τ : (qa, pa, zA, µA) 7→ (qa, pa, zA) . (56)

The bundle Λ1⊥
R(M) has a distinguished 1-form, which is the obvious analogous of the tautological

1-form on T∗M , defined as

ϑPα (X) = α(P ◦ τ∗(X)) , ∀ X ∈ TαM , (57)
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where α has to be considered as a point in Λ1⊥
R(M) on the left hand side, and as a differential 1-form

on M on the right hand side. Since the bundle Λ1⊥
R(M) depends on the chosen almost product

structure P , we stressed the dependence of ϑ on P . In the system of Darboux coordinates, ϑP reads

ϑP = µAP
A . (58)

Consider the differential 2-form
ω̃ = τ ∗ω + dϑP , (59)

on Λ1⊥
R(M). It is closed by definition. On the other hand, it is non-degenerate in a tubular

neighborhood of the zero section of τ . Indeed, consider a vector field X written in the basis{
Hqa := ∂

∂qa
+ Pq

A
a

∂

∂zA
, Hp

a := ∂

∂pa
+ Pp

Aa ∂

∂zA
,
∂

∂zA
,

∂

∂µA

}
a=1,...,r
A=1,...,l

, (60)

as
X = Xq

aHqa +XpaHp
a +Xz

A ∂

∂zA
+XµA

∂

∂µA
. (61)

The contraction iX ω̃ reads

iX ω̃ = Fa dq
a +Ga dpa +HA P

A +KA dµA, (62)

where:

Fa = −Xpa + µA

Xq
b

(
∂Pq

A
b

∂qa
−
∂Pq

A
a

∂qb
+ Pq

B
a

∂Pq
A
b

∂zB
− Pq

B
b

∂Pq
A
a

∂zB

)
+

Xpb

(
∂Pp

Ab

∂qa
−
∂Pq

A
a

∂pb
+ Pq

B
a

∂Pp
Ab

∂zB
− Pp

Bb∂Pq
A
a

∂zB

)
−

Xz
B ∂Pq

A
a

∂zB

, (63)

Ga = Xq
a + µA

Xq
b

(
∂Pq

A
b

∂pa
− ∂Pp

Aa

∂qb
+ Pp

Ba∂Pq
A
b

∂zB
− Pq

B
b

∂Pp
Aa

∂zB

)
+

Xpb

(
∂Pp

Ab

∂pa
− ∂Pp

Aa

∂pb
+ Pp

Ba∂Pp
Ab

∂zB
− Pp

Bb∂Pp
Aa

∂zB

)
−

Xz
B ∂Pp

Aa

∂zB

, (64)

HA = XzA + µB

Xq
b ∂Pq

B
b

∂zA
+Xpb

∂Pp
Bb

∂zA

, (65)

KA = −Xµ
A . (66)

With this in mind, one can easily prove that

iX ω̃ = 0 =⇒ X = 0 , (67)

if and only if, either
µA = 0 , (68)
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or (
∂Pq

A
b

∂qa
−
∂Pq

A
a

∂qb
+ Pq

B
a

∂Pq
A
b

∂zB
− Pq

B
b

∂Pq
A
a

∂zB

)
= 0 (69)(

∂Pp
Ab

∂qa
−
∂Pq

A
a

∂pb
+ Pq

B
a

∂Pp
Ab

∂zB
− Pp

Bb∂Pq
A
a

∂zB

)
= 0 (70)(

∂Pq
A
b

∂pa
− ∂Pp

Aa

∂qb
+ Pp

Ba∂Pq
A
b

∂zB
− Pq

B
b

∂Pp
Aa

∂zB

)
= 0 (71)(

∂Pp
Ab

∂pa
− ∂Pp

Aa

∂pb
+ Pp

Ba∂Pp
Ab

∂zB
− Pp

Bb∂Pp
Aa

∂zB

)
= 0 (72)

∂Pq
A
b

∂zB
= 0 , (73)

∂Pp
Ab

∂zB
= 0 . (74)

for all a, b = 1, ..., r and for all A, B = 1, ..., l. This proves that ω̃ is non-degenerate in a tubular
neighborhood of the zero section of τ (i.e. µA = 0), or, if all the components of NP vanish, on the
whole Λ1⊥

R(M).

Thus, the manifold M̃ reads a tubular neighborhood of the zero section of the bundle Λ1⊥
R (or the

whole bundle Λ1⊥
R if the almost product structure chosen has vanishing Nĳenhuis tensor), the

embedding map i reads the zero section of τ , and the symplectic structure ω̃ is

ω̃ = τ ∗ω + dϑP . (75)

To prove that M is a coisotropic submanifold of M̃ , we shall prove that TmM
⊥ ⊂ TmM for all

m ∈ i(M). Elements of TmM
⊥ are tangent vectors to m ∈ i(M)

X = Xq
aHqa

∣∣∣
m

+XpaHp
a
∣∣∣
m

+Xz
A ∂

∂zA

∣∣∣
m

+Xµ
A ∂

∂µA

∣∣∣
m
, (76)

(now Xq
a, Xpa, Xz

A, and XµA are real numbers) such that

ω̃m(X, W ) = 0 , ∀ W ∈ TmM , (77)

namely for any tangent vector W to M in m

W = Wq
aHqa

∣∣∣
m

+WpaWp
a
∣∣∣
m

+Wz
A ∂

∂zA

∣∣∣
m
. (78)

A straightforward computation shows that

ω̃m(X, W ) = Xq
aWpa −Wq

aXpa +XµAWz
A , (79)

and, thus, (77) implies

Xq
a = Xpa = XµA = 0 , ∀ a = 1, ..., r; A = 1, ..., l . (80)

Consequently X ∈ TmM , which proves that TmM
⊥ ⊂ TmM .
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3.2.2 Uniqueness

Uniqueness of coisotropic embeddings of pre-symplectic manifolds of constant rank has been
proved by M. J. Gotay in [37].

Let (M,ω) be a pre-symplectic manifold of constant rank and let i1 : (M,ω) ↪→ (M̃1, ω̃1), i2 : (M,ω) ↪→
(M̃2, ω̃2) be two different coisotropic embeddings.

The proof of uniqueness can be split into two main steps: an algebraic one, and a geometric one.

• Find a symplectic vector bundle isomorphism

ϕ : (T M̃1|M , ω̃1) −→ (T M̃2|M , ω̃2) ,
which is the identity when restricted to TM .

This first step will be obtained by simple algebra on symplectic vector spaces, point-wise.

Then, such an isomorphism is integrated to a neighborhood diffeomorphism ψ : U1 −→ U2 where
M ⊆ U1 ⊆ M̃1 and M ⊆ U2 ⊆ M̃2 are open neighborhoods of M on M̃1 and M̃2, such that
ψ∗ω̃2|M = ω̃1. Lastly, we apply Moser’s trick:

• Look for a vector field Xt vanishing on M satisfying the hypotheses of Theorem 2.13.

This last step uses the Relative Poincaré Lemma (Theorem 2.14).

The condition that Xt vanishes on M means that its flow at time one, ψ1, will be the identity on M ,
so that we have found a symplectomorphism of the two (possible smaller) neighborhoods U1 and
U2 that is the identity over M .

Let us recall here the notion of neighborhood equivalence:
Definition 3.11 (Neighborhood equivalence). Let i1 : (M,ω) ↪→ (M̃1, ω̃1) and i2 : (M,ω) ↪→ (M̃2, ω̃2)
be two coisotropic embeddings. They are said to be neighborhood equivalent if there exist open neighborhoods
U1 of i1(M) in M̃1 and U2 of i2(M) in M̃2, and a diffeomorphism ψ : U1 −→ U2 such that:

1. ψ is a symplectomorphism, i.e., ψ∗ω̃2 = ω̃1;

2. ψ is the identity on M , i.e., ψ ◦ i1 = i2.

The two steps above are made precise in the following theorem.
Theorem 3.12 (Coisitropic embeddings uniqueness). Two different coisotropic embeddings of (M,ω) are
neighborhood equivalent.

Proof. Let V the characteristic distribution of ω on M , and let H be any complementary distribution
so that TM = V ⊕ H. Let i : (M,ω) ↪→ (M̃, ω̃) be a coisotropic embedding. The distribution
i∗H provides a symplectic vector subbundle of (T M̃ |M , ω̃) since ω̃|H is non degenerate, H being
complementary to V .

Consequently, T M̃ |M = H ⊕ H⊥ and V ⊆ H⊥. On the other hand, V is a Lagrangian subbundle of
H⊥. Indeed

dimH⊥ = dim T M̃︸ ︷︷ ︸
= 2r+2l

− dimH︸ ︷︷ ︸
= 2r

= 2l ,

where r = rankH and l = rankV . Therefore, we necessarily have H⊥ ∼= V ⊕ V∗, so that

T M̃ |M ∼= H ⊕ V ⊕ V∗ = T V∗|M .

It is easy to check that all this chain of vector bundle isomorphisms preserve symplectic forms,
where the symplectic form on V∗ (which, following Remark 2.22, can be identified with Λ1⊥

R(M)) is
defined as in the previous section.
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Following the steps defined at the beginning of this section, it only remains to deal with the case
where M is embedded in U ⊆ M̃ and there are two symplectic forms ω̃1, ω̃2 such that ω̃1 = ω̃2 on
M . Using the relative Poincaré Lemma, and shrinking U further if necessary, we take a 1-form, θ̃
vanishing on M such that

ω̃2 − ω̃1 = dθ̃ .
Now, let us define the following family of forms

ω̃t := tω̃2 + (1 − t)ω̃1 ,

which is symplectic on U (if necessary, we shrink this neighborhood further to achieve this). Now,
define Xt to be the unique time dependent vector field satisfying iXtω̃t = −θ̃. Then,

ω̃2 − ω̃1 + £Xtω̃t = ω̃2 − ω̃1 + diXtω̃t = 0 ,

by definition. This leaves us in the hypotheses of Theorem 2.13. Furthermore, Xt vanishes on
M , since θ̃ does, so that the time-one flow of Xt, say ψ1, is the identity on M , and it defines a
symplectomorphism between (U, ω̃1) and (U, ω̃2), proving the result.

4 Pre-cosymplectic manifolds
Definition 4.1 (Pre-cosymplectic manifold). A pre-cosymplectic manifold is a triple (M, η, ω), where
M is a smooth (2d+ 1)-dimensional manifold, η ∈ Ω1(M) is a closed differential 1-form, and ω ∈ Ω2(M) is
a closed differential 2-form.
Remark 4.2. We will always assume both η and ω to have constant rank, i.e., η to be nowhere vanishing and
the dimension of Im(ω♭m) ⊂ T ∗

mM to be constant for all m ∈ M , where

ω♭ : TM → T∗M : X 7→ ω♭(X)(·) := ω(X, ·) . (81)

Moreover, we will always assume ker η ∩ kerω to have constant dimension, and, thus, to define an integrable
distribution amounting to a subbundle of TM .
Definition 4.3 (Characteristic distribution). The distribution

V := ker η ∩ kerω , (82)

is called the characteristic distribution of (η, ω).
Definition 4.4 (Reeb vector field). Let (M, η, ω) be a pre-cosymplectic manifold. A Reeb vector field is
a vector field R ∈ X(M) satisfying the conditions

iRω = 0 , iRη = 1 . (83)

Remark 4.5 (Cosymplectic manifold). When η ∧ ωd is nowhere vanishing on M , i.e., it is a volume
form, the pair (η, ω) defines a cosymplectic structure on M , and the triple (M, η, ω) is referred to as a
cosymplectic manifold. Then, there is a unique Reeb vector field.
Theorem 4.6 (Darboux theorem for cosymplectic manifolds). Let (M, η, ω) be a (2d+ 1)-dimensional
cosymplectic manifold. Then, for every point m ∈ M , there exists a coordinate chart (U,φ) centered at m,
with coordinates (t, q1, . . . , qd, p1, . . . , pd), such that:

η|U = dt , ω|U = dqa ∧ dpa .

These coordinates are called Darboux coordinates for the cosymplectic structure.

Proof. See [36]
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Theorem 4.7 (Darboux theorem for pre-cosymplectic manifolds). Let (M, η, ω) be a pre-cosymplectic
manifold of dimension 2d+ 1, where η ∈ Ω1(M) and ω ∈ Ω2(M) are closed forms with constant rank, and
such that η ∧ ωr ̸= 0 for some r ≤ d. Then, for every point m ∈ M , there exists a coordinate chart (U,φ)
centered at m, with coordinates (t, q1, . . . , qr, p1, . . . , pr, z

1, . . . , z2(d−r)), such that:

η|U = dt , ω|U = dqa ∧ dpa . (84)

Again, such coordinates are called Darboux coordinates for the pre-cosymplectic structure (η, ω) around
the point m. In the system of Darboux coordinates, the characteristic distribution is spanned by the vector
fields

V = ker η ∩ kerω = span
{

∂

∂zA

}
A=1,...,2(d−r)

. (85)

Thus, Darboux coordinates for the pre-cosymplectic structure (η, ω) are foliated charts for the foliation
associated with the characteristic distribution.

Proof. See [9, 36].

4.1 Coisotropic submanifolds
Definition 4.8 (Cosymplectic orthogonal). Let (M, η, ω) be a cosymplectic manifold, and let Wm ⊆
TmM be a linear subspace of the tangent space at a point m ∈ M . The cosymplectic orthogonal of Wm

with respect to (η, ω) is the subspace

W
⊥(η,ω)
m := {X ∈ TmM : η(X) = 0 and ω(X,Y ) = 0 ∀Y ∈ Wm } . (86)

Remark 4.9. The orthogonality condition is imposed only with respect to the restriction of ω to ker ηm,
where ω defines a symplectic structure. Outside of ker η, ω is non-degenerate; this motivates Definition 4.8.
Definition 4.10 (Coisotropic submanifold of a cosymplectic manifold). Let (M, η, ω) be a cosymplectic
manifold, and let

i : N ↪→ M

be an immersed submanifold. We say that N is a coisotropic submanifold of (M, η, ω) if, for every point
n ∈ N , the cosymplectic orthogonal of the subspace TnN satisfies

TnN
⊥(η,ω) ⊆ TnN . (87)

Remark 4.11. Together with a cosymplectic manifold, there is an induced Poisson structure defined by
the corresponding Poisson brackets (see [25]). Furthermore, every Poisson manifold also has the notion of
orthogonal (see [66]). It is easy to see that this notion coincides with the one presented in this paper.

4.2 Coisotropic embeddings
4.2.1 Existence

Theorem 4.12 (Cosymplectic thickenings for pre-cosymplectic manifolds). Let (M, η, ω) be a
pre-cosymplectic manifold. There exists a cosymplectic manifold (M̃, η̃, ω̃) and an embedding

i : M ↪→ M̃

such that i(M) is a coisotropic submanifold of M̃ . The cosymplectic manifold (M̃, η̃, ω̃) is referred to as a
cosymplectic thickening of (M, η, ω).
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Proof. Consider the characteristic distribution V on M . Consider a complementary distribution H
providing an almost product structure on M associated with the (1, 1)-tensor P on M that, in the
system of Darboux coordinates on M , reads

P =
(

dzA − Pt
Adt− Pq

A
a dqa − Pp

Aadpa
)

⊗ ∂

∂zA
=: PA ⊗ ∂

∂zA
. (88)

The opposite (1, 1)-tensor R reads

R = 1−P = dt⊗
(
∂

∂t
+ Pt

A ∂

∂zA

)
+ dqa ⊗

(
∂

∂qa
+ Pq

A
a

∂

∂zA

)
+ dpa ⊗

(
∂

∂pa
+ Pp

Aa ∂

∂zA

)
. (89)

Consider the bundle Λ1⊥
R(M) over M . Denote by τ the projection map onto M . Its sections are

differential 1-forms that, in the system of Darboux coordinates look like

α = αAP
A . (90)

Thus, a system of adapted coordinates on Λ1⊥
R(M), reads{

t, qa, pa, z
A, µA

}
a=1,...,r
A=1,...,l

, (91)

with l = d− 2r. The projection map τ thus reads

τ : (t, qa, pa, zA, µA) 7→ (t, qa, pa, zA) . (92)

The bundle Λ1⊥
R(M) has a distinguished 1-form, which is the obvious analogous of the tautological

1-form on T∗M , defined as

ϑPα (X) = α(τ∗(X)) , ∀ X ∈ TαM , (93)

where α has to be considered as a point in Λ1⊥
R(M) on the left hand side, and as a differential 1-form

on M on the right hand side. In the system of Darboux coordinates ϑP reads

ϑP = µAP
A . (94)

Consider the differential 2-form
ω̃ = τ ∗ω + dϑP , (95)

on Λ1⊥
R(M). It is closed by definition. On the other hand, ( (τ ∗η), ω̃d ) form a cosymplectic structure

on a tubular neighborhood of the zero section of τ . Indeed, consider a vector field X written in the
basis{

Ht := ∂

∂t
+ Pt

A ∂

∂zA
, Hqa := ∂

∂qa
+ Pq

A
a

∂

∂zA
, Hp

a := ∂

∂pa
+ Pp

Aa ∂

∂zA
,
∂

∂zA
,

∂

∂µA

}
a=1,...,r
A=1,...,l

, (96)

as
X = XtHt +Xq

aHqa +XpaHp
a +Xz

A ∂

∂zA
+XµA

∂

∂µA
. (97)

The contraction iX ω̃ reads

iX ω̃ = E dt+ Fa dqa +Ga dpa +HA P
A +KA dµA, (98)
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where:

E = µA

Xq
a

(
∂Pq

A
a

∂t
− ∂Pt

A

∂qa
+ Pt

B ∂Pq
A
a

∂zB
− Pq

B
a

∂Pt
A

∂zB

)
+

Xpa

(
∂Pp

Aa

∂t
− ∂Pt

A

∂pa
+ Pt

B ∂Pp
Aa

∂zB
− Pp

Ba∂Pt
A

∂zB

)
+

Xz
B ∂Pt

A

∂zB

 , (99)

Fa = −Xpa + µA

Xt

(
∂Pt

A

∂qa
−
∂Pq

A
a

∂t
+ Pq

B
a

∂Pt
A

∂zB
− Pt

B ∂Pq
A
a

∂zB

)
+

Xq
b

(
∂Pq

A
b

∂qa
−
∂Pq

A
a

∂qb
+ Pq

B
a

∂Pq
A
b

∂zB
− Pq

B
b

∂Pq
A
a

∂zB

)
+

Xpb

(
∂Pp

Ab

∂qa
−
∂Pq

A
a

∂pb
+ Pq

B
a

∂Pp
Ab

∂zB
− Pp

Bb∂Pq
A
a

∂zB

)
−

Xz
B ∂Pq

A
a

∂zB

, (100)

Ga = Xq
a + µA

Xt

(
∂Pt

A

∂pa
− ∂Pp

Aa

∂t
+ Pp

Ba∂Pt
A

∂zB
− Pt

B ∂Pp
Aa

∂zB

)
+

Xq
b

(
∂Pq

A
b

∂pa
− ∂Pp

Aa

∂qb
+ Pp

Ba∂Pq
A
b

∂zB
− Pq

B
b

∂Pp
Aa

∂zB

)
+

Xpb

(
∂Pp

Ab

∂pa
− ∂Pp

Aa

∂pb
+ Pp

Ba∂Pp
Ab

∂zB
− Pp

Bb∂Pp
Aa

∂zB

)
−

Xz
B ∂Pp

Aa

∂zB

, (101)

HA = XzA + µB

Xt
∂Pt

B

∂zA
+Xq

b ∂Pq
B
b

∂zA
+Xpb

∂Pp
Bb

∂zA

, (102)

KA = −Xµ
A . (103)

With this in mind, one can easily prove that

iX ω̃ = 0 =⇒ X = XtHt , (104)

if and only if, either
µA = 0 , (105)
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or (
∂Pq

A
a

∂t
− ∂Pt

A

∂qa
+ Pt

B ∂Pq
A
a

∂zB
− Pq

B
a

∂Pt
A

∂zB

)
= 0 (106)(

∂Pp
Aa

∂t
− ∂Pt

A

∂pa
+ Pt

B ∂Pp
Aa

∂zB
− Pp

Ba∂Pt
A

∂zB

)
= 0 (107)(

∂Pt
A

∂qa
−
∂Pq

A
a

∂t
+ Pq

B
a

∂Pt
A

∂zB
− Pt

B ∂Pq
A
a

∂zB

)
= 0 (108)(

∂Pq
A
b

∂qa
−
∂Pq

A
a

∂qb
+ Pq

B
a

∂Pq
A
b

∂zB
− Pq

B
b

∂Pq
A
a

∂zB

)
= 0 (109)(

∂Pp
Ab

∂qa
−
∂Pq

A
a

∂pb
+ Pq

B
a

∂Pp
Ab

∂zB
− Pp

Bb∂Pq
A
a

∂zB

)
= 0 (110)(

∂Pt
A

∂pa
− ∂Pp

Aa

∂t
+ Pp

Ba∂Pt
A

∂zB
− Pt

B ∂Pp
Aa

∂zB

)
= 0 (111)(

∂Pq
A
b

∂pa
− ∂Pp

Aa

∂qb
+ Pp

Ba∂Pq
A
b

∂zB
− Pq

B
b

∂Pp
Aa

∂zB

)
= 0 (112)(

∂Pp
Ab

∂pa
− ∂Pp

Aa

∂pb
+ Pp

Ba∂Pp
Ab

∂zB
− Pp

Bb∂Pp
Aa

∂zB

)
= 0 (113)

∂Pt
B

∂zA
= 0 , (114)

∂Pq
A
b

∂zB
= 0 , (115)

∂Pp
Ab

∂zB
= 0 . (116)

for all a, b = 1, ..., r and for all A = 1, ..., l. This proves that ker τ ∗η ∩ ker ω̃ = {0} in a tubular
neighborhood of the zero section of τ , or, if all the components of NP vanish, on the whole Λ1⊥

R(M).

Thus, the manifold M̃ reads a tubular neighborhood of the zero section of the bundle Λ1⊥
R (or the

whole bundle Λ1⊥
R if the almost product structure chosen has vanishing Nĳenhuis tensor), the

embedding map i reads the zero section of τ , and the cosymplectic structure is given by the pair
(η̃, ω̃) where

η̃ = τ ∗η , (117)
and

ω̃ = τ ∗ω + dϑP . (118)

To prove that M is a coisotropic submanifold of M̃ , we shall prove that TmM
⊥

(η̃,ω̃) ⊂ TmM for all
m ∈ M̃ . Elements of TmM

⊥
(η̃,ω̃) are tangent vectors to m ∈ M̃ , belonging to ker ηm

X = Xq
aHqa

∣∣∣
m

+XpaHp
a
∣∣∣
m

+Xz
A ∂

∂zA

∣∣∣
m

+Xµ
A ∂

∂µA

∣∣∣
m
, (119)

(now Xq
a, Xpa, Xz

A, and XµA are real numbers) such that

ω̃m(X, W ) = 0 , ∀ W ∈ TmM ∩ ker η̃m , (120)

namely for any tangent vector W to M in m of the type

W = Wq
aHqa

∣∣∣
m

+WpaHp
a
∣∣∣
m

+Wz
A ∂

∂zA

∣∣∣
m
. (121)
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A straightforward computation shows that

ω̃m(X, W ) = Xq
aWpa −Wq

aXpa +XµAWz
A , (122)

and, thus (161) implies

Xq
a = Xpa = XµA = 0 , ∀ a = 1, ..., r; A = 1, ..., l . (123)

Consequently X ∈ TmM , which proves that TmM
⊥

(η̃,ω̃) ⊂ TmM .
Remark 4.13. On the pre-cosymplectic manifold (M, η, ω), the Reeb vector field, which is defined by the
conditions

iRω = 0 , (124)
iRη = 1 . (125)

is not uniquely determined. Indeed, there exists a whole family of vector fields on M satisfying (124)-(125):

R = ∂

∂t
+RA ∂

∂zA
, (126)

parametrized by l = dim(V) arbitrary functions RA on M . With this in mind, Theorem 4.12 can be refined
in such a way that the Reeb vector field R̃ on the cosymplectic manifold (M̃, η̃, ω̃) is an extension of one of
the Reeb fields R of the family defined above. In other words, for any given field R from the family above, we
can construct an embedding i such that R̃ is i-related to R, i.e., R̃|i(M) = R.

To show this, one first sees that the Reeb vector field on M̃ reads

R̃ = ∂

∂t
+ PA

t

∂

∂zA
.

Note that this is actually tangent to M , so it makes sense to ask whether it is an extension of any of the vector
fields (126). For R̃|M to coincide with a given R, it is sufficient to impose

PA
t = RA .

This condition has a clear geometric interpretation: it is equivalent to choosing an almost product structure P
such that the pre-selected Reeb fieldR belongs to the horizontal distribution H = kerP . A direct computation
shows:

P (R) = (RA − PA
t ) ⊗ ∂

∂zA
. (127)

The condition P (R) = 0 is therefore satisfied if and only if PA
t = RA. Since one can always construct

a horizontal distribution H (and, thus, an almost product structure P ) that contains a given vector field
transverse to the vertical distribution V , we can conclude that for every Reeb field R on M , there exists a
coisotropic embedding that extends it.

4.2.2 Uniqueness

As Remark 4.13 clearly shows, differently from the pre-symplectic case, coisotropic embeddings
are not unique in this context, as we get a continuous family of possible coisotropic embeddings,
parametrized by each possible choice of Reeb vector field.

What we can guarantee, however, is that the topology of the embeddings must coincide, as there is
a vector bundle isomorphism of T M̃ |M with T V∗|M , where i : M ↪→ M̃ is an arbitrary coisotropic
embedding, and V is the characteristic distribution on M .
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Theorem 4.14. Let (M,ω, η) be a pre-cosymplectic manifold, and i : (M,ω, η) −→ (M̃, ω̃, η̃) be a coisotropic
embedding. Then, (M, M̃) and (M,V∗) are neighborhood diffeomorphic (not cosymplectomorphic).

Proof. Decompose TM as TM = V ⊕ ⟨R⟩ ⊕ H, where V is the characteristic distribution, R is a
choice of Reeb vector field, and H is an arbitrary complement to V in ker η. Then, an argument
similar to the one followed in Theorem 3.12 shows that H is a symplectic bundle in T M̃ |M , and so
is H⊥, which satisfies

T M̃ = H ⊕ H⊥ ⊕ ⟨R̃⟩ ,

where R̃ denotes the Reeb vector field on M̃ . Since V ⊆ H⊥ is Lagrangian, we have

T M̃ |M = H ⊕ H⊥ ⊕ ⟨R̃⟩ ∼= H ⊕ V ⊕ V∗ ⊕ ⟨R⟩ ∼= T V∗|M .

Remark 4.15. It is easy to show that under the aditional condition that two coisotropic embeddings induce
the same Reeb vector field on M , the the previous diffeomorphism preserves the cosymplectic structure on M .

A natural question to ask is whether we can guarantee the uniqueness of the embedding when a
possible Reeb vector field is fixed on M . This is not the case with full generality, as the following
example shows:
Example 4.16. Let M = S1 × S1 be the two-dimensional torus, together with the pre-symplectic structure
ω = 0, η = dθ1, where dθ1 denotes the canonical volume form on the first copy of S1. Let M̃ := R × S1 × S1

together with the following two possible cosymplectic structures:

(ω̃1 = dt ∧ dθ2, η1 = dθ1) , (ω̃2 = dt ∧ dθ2 + tdθ1 ∧ dt , η = dθ1).

It is clear thatM , identified as the zero section of M̃ = R×M , is coisotropic for both structures. Let us check
that these are not neighborhood isomorphic. Indeed, their respective Reeb vector fields are written as follows:

R1 = ∂

∂θ1 , R2 = ∂

∂θ1 + t
∂

∂θ2 ,

and the orbits that these two vector fields define lie within the tori {a} × S1 × S1, where a ∈ R is arbitrary.
Clearly, these two vector fields coincide on M (where t = 0). However, for each neighborhood of M in M̃ ,
there is a smaller neighborhood such that R1 is only comprised of periodic orbits. However, R2 does not
satisfy this same property, showing that they are not neighborhood equivalent.

However, if we have a coisotropic embedding of a pre-cosymplectic manifold (M,ω, η) into one
manifold M̃ with two different cosymplectic structures (ω̃1, η̃1), (ω̃2, η̃2), such that they coincide on
M and their corresponding Reeb vector fields are proportional, they are neighborhood equivalent:
Theorem 4.17. Let (M,ω, η) be a pre-cosymplectic manifold and i : M ↪→ M̃ be a coisotropic embedding for
two different cosymplectic structures on M̃ , (ω̃1, η̃1) and (ω̃2, η̃2). Suppose that these two structures satisfy
the following hypotheses:

1. They coincide on M ;

2. Their Reeb vector fields are proportional.

Then, these two embeddings are neighborhood equivalent.

Proof. We just apply Moser’s trick and look for a time-dependent vector field Xt satisfying

£Xtω̃t = ω̃2 − ω̃1 , £Xt η̃t = η̃2 − η̃1 ,
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where ω̃t = tω̃2 + (1 − t)ω̃1, and η̃t = tη̃2 + (1 − t)η̃1. Applying Poincaré Lemma, let us denote by θ
and f a 1-form and a function vanishing on M , respectively, satisfying

ω̃2 − ω̃1 = dθ , η̃1 − η̃1 = df .

Then, it is enough to look for a time-dependent vector field satisfying

iXtω̃t = θ , iXtθt = f .

For this, it is enough to show that we may choose θ such that i
R̃t
θ = 0, for every t, where R̃t denotes

the Reeb vector field associated to the cosymplectic structure (ω̃t, η̃t). Indeed, using the Relative
Poincaré Lemma (Theorem 2.14), θ can be explicitely defined as

θ =
∫ 1

0
t2i∆t(ω̃2 − ω̃1)dt ,

where ∆ is a Liouville vector field for a tubular neighborhood. From this construction, and using
that R̃t is propostional to R̃1 and R̃2, it follows that i

R̃t
θ = 0, so that we may apply Moser’s trick,

and the theorem follows.

5 Pre-contact manifolds
Definition 5.1 (Pre-contact manifold). A pre-contact manifold is a pair (M, η), where M is a smooth
(2d+ 1)-dimensional manifold, and η ∈ Ω1(M) is a differential 1-form of constant rank.
Remark 5.2. We always assume that η is nowhere vanishing and that the distribution

V := ker η ⊂ TM

has constant rank 2d, and defines a smooth subbundle of the tangent bundle. We also assume that the
restriction of dη to V has constant rank.
Definition 5.3 (Characteristic distribution). Let (M, η) be a pre-contact manifold. We define the
characteristic distribution of η as

V := ker η ∩ ker(dη|ker η) .

It is the maximal integrable distribution contained in ker η on which dη vanishes.
Definition 5.4 (Reeb vector field). Let (M, η) be a pre-contact manifold. A Reeb vector field is a vector
field R ∈ X(M) satisfying the conditions

iRdη = 0 , iRη = 1 . (128)

Remark 5.5 (Contact manifold). When η ∈ Ω1(M) is such that

η ∧ (dη)d ̸= 0

everywhere on M , the 1-form defines a contact structure, and the pair (M, η) is called a contact manifold.
In this case, ker η has rank 2d, and the restriction dη|ker η defines a symplectic structure.
Theorem 5.6 (Darboux theorem for contact manifolds). Let (M, η) be a contact manifold of dimension
2d+ 1. Then, for every point m ∈ M , there exists a coordinate chart (U,φ) centered at m, with coordinates
(t, q1, . . . , qd, p1, . . . , pd), such that

η|U = dt− padqa .

Such coordinates are called Darboux coordinates for the contact form η.
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Proof. See [36].
Theorem 5.7 (Darboux theorem for pre-contact manifolds). Let (M, η) be a pre-contact manifold of
dimension 2d+ 1, with η ∈ Ω1(M) a 1-form of constant rank, and such that the rank of dη|ker η is constant
and equal to 2r < 2d. Then, for every point m ∈ M , there exists a coordinate chart (U,φ) around m, with
coordinates

(t, q1, . . . , qr, p1, . . . , pr, z
1, . . . , z2(d−r)) ,

such that the 1-form η reads
η|U = dt− padqa .

These coordinates are called Darboux coordinates for the pre-contact form η. In these coordinates, the
characteristic distribution of η is

V = span
{

∂

∂zA

}
A=1,...,2(d−r)

.

Thus, Darboux coordinates are foliated charts for the foliation associated with the characteristic distribution
V .

Proof. See [36].

5.1 Coisotropic submanifolds
Definition 5.8 (Contact orthogonal). Let (M, η) be a contact manifold, and let Wm ⊆ TmM be a linear
subspace of the tangent space at a point m ∈ M . The contact orthogonal of Wm with respect to η is defined
as

W⊥η
m := {X ∈ ker ηm : dη(X, Y ) = 0 ∀Y ∈ Wm } .

Remark 5.9. Notice that W⊥η
m is nothing but the symplectic orthogonal of Wm inside ker ηm.

Definition 5.10 (Coisotropic submanifold of a contact manifold). Let (M, η) be a contact manifold,
and let

i : N ↪→ M

be an immersed submanifold. We say that N is a coisotropic submanifold of (M, η) if, for every point
n ∈ N

TnN
⊥η ⊆ TnN .

Remark 5.11. Similar to the cosymplectic setting, for each contact manifold there is an associated Jacobi
structure, which have a notion of orthogonal. Again, it can be easily shown that both definitions coincide (see
[18]).

5.2 Coisotropic embeddings
5.2.1 Existence

Theorem 5.12 (Contact thickenings of pre-contact manifolds). Let (M, η) be a pre-contact manifold.
There exists a contact manifold (M̃, η̃) and an embedding

i : M ↪→ M̃

such that i(M) is a coisotropic submanifold of M̃ . The contact manifold (M̃, η̃) is referred to as a contact
thickening of (M, η).
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Proof. Consider the characteristic distribution V on M . Consider a complementary distribution H
providing an almost product structure on M associated with the (1, 1)-tensor P on M that, in the
system of Darboux coordinates on M , reads

P =
(

dzA − Pt
Adt− Pq

A
a dqa − Pp

Aadpa
)

⊗ ∂

∂zA
. (129)

The opposite (1, 1)-tensor R reads

R = 1−P = dt⊗
(
∂

∂t
+ Pt

A ∂

∂zA

)
+dqa⊗

(
∂

∂qa
+ Pq

A
a

∂

∂zA

)
+dpa⊗

(
∂

∂pa
+ Pp

Aa ∂

∂zA

)
. (130)

Consider the bundle Λ1⊥
R(M) over M . Denote by τ the projection map onto M . Its sections are

differential 1-form that, in the system of Darboux coordinates looks like

α = αAP
A . (131)

Thus, a system of adapted coordinates on Λ1⊥
R(M), reads{

t, qa, pa, z
A, µA

}
a=1,...,r
A=1,...,l

, (132)

where l = 1, ..., 2(d− r). The projection map τ thus reads

τ : (t, qa, pa, zA, µA) 7→ (t, qa, pa, zA) . (133)

The bundle Λ1⊥
R(M) has a distinguished 1-form, which is the obvious analogous of the tautological

1-form on T∗M , defined as

ϑPα (X) = α(τ∗(X)) , ∀ X ∈ TαM , (134)

where α has to be considered as a point in Λ1⊥
R(M) on the left hand side, and as a differential 1-form

on M on the right hand side. In the system of Darboux coordinates ϑP reads

ϑP = µAP
A . (135)

Consider the differential 1-form
η̃ = τ ∗η − ϑP , (136)

on Λ1⊥
R(M). It is a contact structure in a tubular neighborhood of the zero section of τ . Indeed,

consider a vector field X written in the basis{
Ht := ∂

∂t
+ Pt

A ∂

∂zA
, Hqa := ∂

∂qa
+ Pq

A
a

∂

∂zA
, Hp

a := ∂

∂pa
+ Pp

Aa ∂

∂zA
,
∂

∂zA
,

∂

∂µA

}
a=1,...,r
A=1,...,l

,

(137)
as

X = XtHt +Xq
aHqa +XpaHp

a +Xz
A ∂

∂zA
+XµA

∂

∂µA
. (138)

The contraction iXdη̃ reads

iXdη̃ = E dt+ Fa dqa +Ga dpa +HA P
A +KA dµA, (139)
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where:

E = µA

Xq
a

(
∂Pt

A

∂qa
−
∂Pq

A
a

∂t
+ Pq

B
a

∂Pt
A

∂zB
− Pt

B ∂Pq
A
a

∂zB

)
+

Xpa

(
∂Pt

A

∂pa
− ∂Pp

Aa

∂t
+ Pp

Ba∂Pt
A

∂zB
− Pt

B ∂Pp
Aa

∂zB

)
+

Xz
B ∂Pt

A

∂zB

 , (140)

Fa = −Xqa + µA

Xt

(
∂Pq

A
a

∂t
− ∂Pt

A

∂qa
+ Pt

B ∂Pq
A
a

∂zB
− Pq

B
a

∂Pt
A

∂zB

)
+

Xq
b

(
∂Pq

A
b

∂qa
−
∂Pq

A
a

∂qb
+ Pq

B
a

∂Pq
A
b

∂zB
− Pq

B
b

∂Pq
A
a

∂zB

)
+

Xpb

(
∂Pp

Ab

∂qa
−
∂Pq

A
a

∂pb
+ Pq

B
a

∂Pp
Ab

∂zB
− Pp

Bb∂Pq
A
a

∂zB

)
+

Xz
B ∂Pq

A
a

∂zB

, (141)

Ga = Xq
a + µA

Xt

(
∂Pp

Aa

∂t
− ∂Pt

A

∂pa
+ Pt

B ∂Pp
Aa

∂zB
− Pp

Ba∂Pt
A

∂zB

)
+

Xq
b

(
∂Pq

A
b

∂pa
− ∂Pp

Aa

∂qb
+ Pp

Ba∂Pq
A
b

∂zB
− Pq

B
b

∂Pp
Aa

∂zB

)
+

Xpb

(
∂Pp

Ab

∂pa
− ∂Pp

Aa

∂pb
+ Pp

Ba∂Pp
Ab

∂zB
− Pp

Bb∂Pp
Aa

∂zB

)
+

Xz
B ∂Pp

Aa

∂zB

, (142)

HA = −XzA − µB

Xt
∂Pt

B

∂zA
Xq

b ∂Pq
B
b

∂zA
+Xpb

∂Pp
Bb

∂zA

, (143)

KA = Xµ
A . (144)

With this in mind, one can easily prove that

iXdη̃ = 0 =⇒ Xq
a = Xpa = Xz

A = XµA = 0 , (145)

if and only if, either
µA = 0 , (146)
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or (
∂Pt

A

∂qa
−
∂Pq

A
a

∂t
+ Pq

B
a

∂Pt
A

∂zB
− Pt

B ∂Pq
A
a

∂zB

)
= 0 (147)(

∂Pt
A

∂pa
− ∂Pp

Aa

∂t
+ Pp

Ba∂Pt
A

∂zB
− Pt

B ∂Pp
Aa

∂zB

)
= 0 (148)(

∂Pq
A
a

∂t
− ∂Pt

A

∂qa
+ Pt

B ∂Pq
A
a

∂zB
− Pq

B
a

∂Pt
A

∂zB

)
= 0 (149)(

∂Pq
A
b

∂qa
−
∂Pq

A
a

∂qb
+ Pq

B
a

∂Pq
A
b

∂zB
− Pq

B
b

∂Pq
A
a

∂zB

)
= 0 (150)(

∂Pp
Ab

∂qa
−
∂Pq

A
a

∂pb
+ Pq

B
a

∂Pp
Ab

∂zB
− Pp

Bb∂Pq
A
a

∂zB

)
= 0 (151)(

∂Pp
Aa

∂t
− ∂Pt

A

∂pa
+ Pt

B ∂Pp
Aa

∂zB
− Pp

Ba∂Pt
A

∂zB

)
= 0 (152)(

∂Pq
A
b

∂pa
− ∂Pp

Aa

∂qb
+ Pp

Ba∂Pq
A
b

∂zB
− Pq

B
b

∂Pp
Aa

∂zB

)
= 0 (153)(

∂Pp
Ab

∂pa
− ∂Pp

Aa

∂pb
+ Pp

Ba∂Pp
Ab

∂zB
− Pp

Bb∂Pp
Aa

∂zB

)
= 0 (154)

∂Pt
B

∂zA
= 0 (155)

∂Pq
B
b

∂zA
= 0 (156)

∂Pp
Bb

∂zA
= 0 . (157)

for all a, b = 1, ..., r and for all A,B = 1, ..., l. This proves that dη̃ has kernel spanned by

ker dη̃ = ⟨
{
∂

∂t

}
⟩ (158)

in a tubular neighborhood of the zero section of τ (i.e. µA = 0), or, if all the components of NP

vanish, on the whole Λ1⊥
R(M).

Thus, the manifold M̃ reads a tubular neighborhood of the zero section of the bundle Λ1⊥
R (or the

whole bundle Λ1⊥
R if the almost product structure chosen has vanishing Nĳenhuis tensor), the

embedding map i reads the zero section of τ , and the contact structure η̃ is

η̃ = τ ∗η − ϑP . (159)

To prove that M is a coisotropic submanifold of M̃ , we shall prove that TmM
⊥

η̃ ⊂ TmM for all
m ∈ M̃ . Elements of TmM

⊥
η̃ are tangent vectors to m ∈ M̃ , belonging to ker η̃m

X = pamWq
aHt

∣∣∣
m

+Xq
aHqa

∣∣∣
m

+XpaHp
a
∣∣∣
m

+Xz
A ∂

∂zA

∣∣∣
m

+Xµ
A ∂

∂µA

∣∣∣
m
, (160)

(now Xq
a, Xpa, Xz

A, and XµA are real numbers) such that

dη̃m(X, W ) = 0 , ∀ W ∈ TmM ∩ ker η̃m , (161)
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namely for any tangent vector W to M in m of the type

W = pamWq
aHt

∣∣∣
m

+Wq
aHqa

∣∣∣
m

+WpaHp
a
∣∣∣
m

+Wz
A ∂

∂zA

∣∣∣
m
. (162)

A straightforward computation shows that

dη̃m(X, W ) = Xq
aWpa −Wq

aXpa +XµAWz
A , (163)

and, thus (161) implies

Xq
a = Xpa = XµA = 0 , ∀ a = 1, ..., r; A = 1, ..., l . (164)

Consequently X ∈ TmM , which proves that TmM
⊥

η̃ ⊂ TmM .
Remark 5.13. Similarly to the pre-cosymplectic case, one can show that a pre-contact manifold (M, η) has a
whole family of Reeb vector fields

R = ∂

∂t
+RA ∂

∂zA
, (165)

and, following the same proof, one can show that for each element of such a family, a coisotropic embedding
i from (M, η) to (M̃, η̃) can be constructed (the one given by the almost product structure such that
P (R) = 0) such that the Reeb vector field of R̃ of (M̃, η̃) is i-related with R.

5.2.2 Uniqueness

As for pre-cosymplectic manifolds, Remark 5.13 immediately implies also in the pre-contact case
that coisotropic embeddings are not unique, as different choices of Reeb vector fields are possible.
However, and similar to the case of pre-cosymplectic embeddings, the topology of the embeddings
is fixed:
Theorem 5.14. Let (M, η) be a pre-contact manifold, and let i : (M, η) ↪→ (M̃, η̃) be a coisotropic embedding.
Then, it is neighborhood diffeomorphic to the one built in Theorem 5.12.

Throughout the proof, we use the term symplectic and Lagrangian subbundle of a contact manifold
(M, η) in the following sense: When dealing with a vector subbundle D contained in ker η, we
say that D is Lagrangian (resp. symplectic) when D is a Lagrangian (resp. symplectic) vector
subbundle of the symplectic vector bundle (ker η, dη).

Proof. Denote by V = ker η ∩ ker dη the characteristic distribution on M , and let H be any
complement to V ⊕ ⟨R⟩, where R is an arbitrary choice of vector field satisfying

η(R) = 1 , iRdη = 0 ,

so that TM = V ⊕ H ⊕ ⟨R⟩. Following the techniques used in Section 4, we have that

T M̃ |M = H⊥ ⊕ H ⊕ ⟨R̃⟩ ,

where R̃ denotes the Reeb vector field on M̃ . Furthermore, since V ⊆ H⊥ is a Lagrangian
subbundle from a symplectic subbundle (since H is symplectic in the pre-symplectic vector bundle
(T M̃ |M , dη)), we have H⊥ ∼= V ⊕ V∗. Hence, we have that

T M̃ |M = H ⊕ H⊥ ⊕ ⟨R̃⟩ ∼= H ⊕ V ⊕ V∗ ⊕ ⟨R̃⟩ ,

which is clearly isomorphic to H ⊕ V ⊕ ⟨R⟩ ⊕ V∗ ∼= V∗ ⊕ TM ∼= T V∗|M . Taking a tubular
neighborhood of the zero-section finishes the proof.
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Remark 5.15. Furthermore, when two embeddings are such that their Reeb vector fields are equal on M ,
then it is easy to check that the previous diffeomorphism actually preserves the contact structure (both η and
dη) on M .

As for the pre-cosymplectic scenario, fixing a Reeb vector field on M is not enough to guarantee
uniqueness, as the following example shows:
Example 5.16. LetM = S1 ×S1 be the two-dimensional torus, together with the pre-contact structure given
by η = dθ2, where dθ2 denotes the canonical volume form on the second copy of S1. Let M̃ := (−1, 1)×S1×S1

together with the following two possible contact structures:

η̃1 = dθ2 − tdθ1 , η̃2 =
(

1 + t2

2

)
dθ2 − tdθ1.

It is clear that M , identified as the zero section of M̃ = (−1, 1) ×M , is a coisotropic submanifold of M̃ , with
respect to both contact structures. Let us check that these are not neighborhood isomorphic. Indeed, their
respective Reeb vector fields are written as follows:

R̃1 = ∂

∂θ2 , R̃2 = 2
2 − t2

(
t
∂

∂θ1 + ∂

∂θ2

)
.

The argument now proceeds as in the cosymplectic scenario.

What we can guarantee, however, that if the orbits of the Reeb vector fields coincide on a
neighborhood of M , then the contact structures are neighborhood equivalent.
Theorem 5.17. Let M̃ be a manifold and i : M ↪→ M̃ be a coisotropic submanifold. Suppose η̃1 and η̃2

are two contact forms on M̃ such that η̃1 = η̃2 and dη̃1 = dη̃2 on M , and such that M is a coisotropic
submanifold of the contact structure induced by both of them. If the Reeb vector fields of the two contact
structures are proportional, then the contact structures are neighborhood equivalent.

Proof. Notice first that we may assume that both vector fields are equal, as it is easy to find a
diffeomorphism that transforms one into another. Let us apply Moser’s trick, and look for a
time-dependent vector field Xt such that

˙̃ηt + £Xt η̃t = 0 ,

where η̃t = tη̃2 + (1 − t)η̃1, that is, we look for a vector field satifying

η̃1 − η̃2 = diXt η̃t + iXtdη̃t .

Notice that the Reeb vector field of η̃t, R̃t, is the Reeb vector field of η̃1 and η̃2, which we denote by
R̃. Hence, we may choose Xt to lie in the horizontal distribution ker η̃t, and look for a solution of

iXtdη̃t = η̃1 − η̃2 ,

which has a unique solution, as R̃t annihilates the right term. As usual, the time one flow
of this vector field (which exists on a neighborhodd since Xt = 0 on M ) defines the desired
contactomorphism.

6 Pre-cocontact manifolds
Definition 6.1 (Pre-cocontact manifold). A pre-cocontact manifold is a triple (M, ξ, η), where M is
a smooth d-dimensional manifold and ξ, η ∈ Ω1(M) are differential 1-forms such that ξ is closed, i.e., dξ = 0.
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Definition 6.2 (Characteristic distribution). The characteristic distribution of a pre-cocontact
structure (M, ξ, η) is the distribution

V := ker ξ ∩ ker η ∩ ker(dη) ⊂ TM. (166)

We assume V has constant rank.
Remark 6.3. From now on, we will assume that for l = corank V − 2, we have that ξ ∧ η ∧ (dη)l is nowhere
zero.
Definition 6.4 (Reeb vector fields). Let (M, ξ, η) be a pre-cocontact manifold. The structure admits two
(non unique) characteristic vector fields, often called Reeb vector fields:

• A vector field Rξ ∈ X(M) satisfying

iRξ
η = 0 , iRξ

dη = 0 , iRξ
ξ = 1 .

• A vector field Rη ∈ X(M) satisfying

iRηξ = 0 , iRηdη = 0 , iRηη = 1 .

Remark 6.5 (Cocontact manifold). A pre-cocontact manifold is called a cocontact manifold if it is
non-degenerate. This means that if the dimension of the manifold is d = 2n+ 2, the form

ξ ∧ η ∧ (dη)n (167)

is a volume form onM . This structure provides a geometric framework for time-dependent contact mechanics
[14]. In a cocontact manifold, Reeb vector fields are unique.
Theorem 6.6 (Darboux theorem for cocontact manifolds). Let (M, ξ, η) be a (2n+ 2)-dimensional
cocontact manifold. For every point m ∈ M , there exists a coordinate chart (U,φ) centered at m, with
coordinates (s, t, q1, . . . , qn, p1, . . . , pn), such that:

ξ|U = ds, η|U = dt− padqa.

Such coordinates are called Darboux coordinates for the cocontact structure.

Proof. See [14].
Theorem 6.7 (Darboux theorem for pre-cocontact manifolds). Let (M, ξ, η) be a pre-cocontact
manifold such that its characteristic distribution V has constant rank l. For every point m ∈ M , there
exists a coordinate chart (U,φ) centered at m, with coordinates (s, t, q1, . . . , qr, p1, . . . , pr, z

1, . . . , zl), where
2 + 2r + l = dim(M), such that:

ξ|U = ds, η|U = dt− padqa. (168)

In these coordinates, the characteristic distribution is

V = span
{

∂

∂zA

}
A=1,...,l

. (169)

Proof. The proof follows by a slight modification of that in [14] for cocontact manifolds.
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6.1 Coisotropic submanifolds
Definition 6.8 (Cocontact orthogonal). Let (M, ξ, η) be a cocontact manifold, and let Wm ⊆ TmM be
a linear subspace of the tangent space at a point m ∈ M . The cocontact orthogonal of Wm is the subspace

W
⊥(ξ,η)
m := {X ∈ ker ξm ∩ ker ηm : dηm(X, Y ) = 0 ∀Y ∈ Wm } . (170)

Definition 6.9 (Coisotropic submanifold of a cocontact manifold). Let (M, ξ, η) be a cocontact
manifold, and let i : N ↪→ M be an immersed submanifold. We say that N is a coisotropic submanifold if,
for every point n ∈ N , its cocontact orthogonal is contained within its tangent space:

(TnN)⊥(ξ,η) ⊆ TnN. (171)

6.2 Coisotropic embeddings
6.2.1 Existence

Theorem 6.10 (Cocontact thickenings for pre-cocontact manifolds). Let (M, ξ, η) be a pre-cocontact
manifold. There exists a cocontact manifold (M̃, ξ̃, η̃) and an embedding

i : M ↪→ M̃

such that i(M) is a coisotropic submanifold of M̃ .

Proof. Consider the characteristic distribution V = ker ξ ∩ ker η ∩ ker(dη) and an associated almost
product structure P . The thickening space M̃ is a tubular neighborhood of the zero section of
the vector bundle Λ1⊥

R(M). Let τ : M̃ → M be the bundle projection. In a Darboux chart for the
pre-cocontact structure, the adapted coordinates on M̃ are (s, t, qa, pa, zA, µA).

We define the new structure (ξ̃, η̃) on M̃ by:

ξ̃ := τ ∗ξ, (172)
η̃ := τ ∗η + ϑP , (173)

where ϑP = µAP
A is the tautological 1-form. In local coordinates, we have

ξ̃ = ds , (174)
η̃ = dt− padqa + µAP

A . (175)

The form ξ̃ is clearly closed. The new 1-form η̃ is constructed such that the term dϑP introduces the
necessary non-degenerate pairings between the new fiber coordinates µA and the base coordinates
zA, which were the source of the degeneracy. A direct computation analogous to the one performed
in the case of pre-contact manifolds shows that ξ̃ ∧ η̃ ∧ (dη̃)r is non-vanishing in a neighborhood of
the zero section, making (M̃, ξ̃, η̃) a cocontact manifold.

The proof that M is a coisotropic submanifold follows by showing that any vector X ∈ (TmM)⊥
(ξ̃,̃η)

must be tangent to M , which can be proved, again, by an analogous computation to the one
performed in the pre-contact case.
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6.2.2 Uniqueness

Uniqueness of coisotropic embeddings in the pre-cocontact case does not hold, similar to the pre-
contact and pre-cosymplectic scenario. However, as in the previous cases, topological uniqueness
still holds:
Theorem 6.11. Let (M, ξ, η) be a pre-cocontact manifold and let i : (M, ξ, η) ↪→ (M̃, ξ̃, η̃) be a coisotropic
embedding. Then, it is neighborhood diffeomorphic to the one of Theorem 6.10.

Proof. The proof goes as in the contact case, taking a complement H to V ⊕ ⟨Rξ⟩ ⊕ ⟨Rη⟩, where Rξ

and Rη are arbitrary Reeb vector fields on M .
Remark 6.12. Again, assuming that two coisotropic embeddings induce the same pair of Reeb vector fields
on M we may show that the diffeomorphism preserves the cocontact structure on M .

Now, as for neighborhood equivalence goes, Example 4.16 and Example 5.16 may be easily
generalized to include a pre-cocontact manifold. Nevertheless, we can still prove a version of
uniqueness, when both pairs of Reeb vector fields are tangent and proportional to each other.
Theorem 6.13. Let (M, ξ, η) be a pre-cocontact manifold, and let ii : M → M̃ , be coisotropic embeddings
for two different cocontact structures, (ξ̃i, η̃i), for i = 1, 2, such that ξ̃1 = ξ̃2, η̃1 = η̃2, and dη̃1 = dη̃2 on
M . Further suppose that both pairs of Reeb vector fields (Ri

t, R
i
s) are proportional pair-wise. Then, the

embeddings are neighborhood equivalent to each other.

Proof. Define ξ̃t := tξ̃2 + (1 − t)ξ̃1 and η̃t := tη̃2 − η̃1, for t ∈ [0, 1]. Then, reducing neighborhoods
further if necessary, we have that (ξ̃t, η̃t) defines a cocontact manifold, for every t ∈ [0, 1]. In order
to apply Moser’s trick, let us look for a time dependent vector field Xt ∈ X(M̃1) satisfying the
following

ξ̃2 − ξ̃1 + £Xt ξ̃t = 0 ,
η̃2 − η̃1 + £Xt η̃t = 0 .

Hence, we need to find a solution to

ξ̃2 − ξ̃1 + diXtξt = 0 ,
η̃2 − η̃1 + diXt η̃t + iXtdη̃t = 0 .

Notice that the 1-form ξ̃2 − ξ̃1 is closed and vanishes on M , so that we may apply the relative
Poincaré Lemma and (again, reducing neighborhoods if necessary), and write ξ̃2 − ξ̃1 = df , for
certain function f vanishing on M . Hence, it suffices to solve

iXt ξ̃t = f ,

η̃2 − η̃1 + diXt η̃t + iXtdη̃t = 0 .

Recall that the corresponding Reeb vector fields are proportional, so that Reeb vector fields of the
cocontact structure defined by (ξ̃t, η̃t) remain proportional to the original. This implies that we
may look for Xt ∈ ker ηt and solve for

iXt ξ̃t = f ,

iXtdη̃t = −η̃2 + η̃1 ,

η̃t(Xt) = 0 .

With a mix of the arguments employed in the cosymplectic and contact scenario, we see that such
a vector field exists, and is unique. Furthermore, since the right hand side of all three condition
vanishes on M , so does Xt, which implies that we may appy Moser’s Trick and obtain the desired
neighborhood equivalence.
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7 k-Pre-symplectic manifolds
To our knowledge, the theory of k-symplectic manifolds is usually done by requiring a Darboux
theorem, namely the existence of coordinate charts that transform the differential forms defining
the structure into forms having constant coefficients. However, we work with a general family of
2-forms such that their kernels intersect trivially. This allows for more general embeddings, but
when working with manifolds which are locally isomorphic to

T∗ Q⊕ · · · ⊕ T∗ Q︸ ︷︷ ︸
k times

,

up to a kernel, or more general manifolds admitting a Darboux theorem (see [44]), we do not
recover another manifold with such a k-symplectic structure when performing the thickening
procedure developed here.

Hence, we prove a general coisotropic embedding theorem for general k-pre-symplectic manifolds,
at the risk of loosing structure on the thickening.

Nevertheless, we deal with the question of classifying the coisotropic embeddings of a k-pre-
symplectic manifold with certain local model into one where the model is

T∗ Q⊕ · · · ⊕ T∗ Q︸ ︷︷ ︸
k times

in the uniqueness section. We mention that, as explained in the introduction, uniqueness in
geometries modelling field theories (if ti exists) will be only found topologically, through a
diffeomorphism that preserves the structures on the submanifold.
Definition 7.1 (k-Pre-symplectic manifold). A k-pre-symplectic manifold is a pair (M, {ω1, . . . , ωk})
whereM is a smooth d-dimensional manifold, and {ω1, . . . , ωk} is a collection of k closed differential 2-forms,
ωj ∈ Ω2(M) for j = 1, . . . , k.
Remark 7.2. As in Section 3, we will always assume that each form ωj has constant rank. Furthermore, we
assume that the intersection of the kernels has constant rank.
Definition 7.3 (Characteristic distribution). The distribution

V :=
k⋂
j=1

kerωj ⊂ TM (176)

is called the characteristic distribution of the k-pre-symplectic structure. Since each ωj is closed, one
easily proves that V is an involutive distribution and thus, it is integrable.
Remark 7.4 (k-Symplectic manifold). When the intersection of the kernels is trivial, i.e., V = {0}, the
collection of forms {ω1, . . . , ωk} is said to be non-degenerate, and the pair (M, {ω1, . . . , ωk}) is referred to as
a k-symplectic manifold.
Remark 7.5. As we mentioned, the notion of k-symplectic manifold present in the literature is more
restrictive. We prefer this general approach because of the wider possibilities of applications in classical field
theories.

As we have established, our notion of k-symplectic manifold is more general than the one that may
be found in the literature. For completeness, we state the Darboux theorem in the latter scenario
for both k-symplectic and k-pre-symplectic manifolds.
Definition 7.6 (k-Lagrangian distribution). A distribution L on ak-symplectic manifold (M, {ω1, . . . , ωk})
is called k-Lagrangian if for every m ∈ M

L|m = {v ∈ TmM : , ωj(v,L|m) = 0 , for j = 1, . . . k} .
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Theorem 7.7 (Darboux theorem for k-symplectic manifolds). Let (M, {ω1, . . . , ωk}) be a k-symplectic
manifold of dimension n+ nk, for certain k. If there exists a Lagrangian involutive distribution on M of
rank nk, then for every point m ∈ M , there exists a coordinate chart (U,φ) with coordinates (qa, pja), with
a = 1, . . . , n such that the k-symplectic forms read

ωj|U =
n∑
a=1

dqa ∧ dpja, for j = 1, . . . , k. (177)

Proof. See [26, 27].
Remark 7.8. Theorem 7.7 implies that under the assumption that dimM = n+ nk and that there exists a
Lagrangian involutive distribution of rank nk, (M, {ω1, . . . , ωk}) is locally isomorphic to T∗ Q⊕ · · · ⊕ T∗ Q︸ ︷︷ ︸

k times

,

together with its canonical k-symplectic structure (see [26, 27]). We would like to mention that less restrictive
conditions on a k-pre-symplectic manifold have been obtained in order to guarantee a Darboux theorem in
[44].

In full generality, we can only guarantee the following:
Theorem 7.9 (Darboux theorem for k-pre-symplectic manifolds). Let (M, {ω1, . . . , ωk}) be a k-pre-
symplectic manifold, such that its characteristic distribution V has constant rank l. Then, for every point
m ∈ M , there exists a coordinate chart (U,φ) around m, with coordinates (x1, . . . , xd−l, z1, . . . , zl), such
that the characteristic distribution is locally spanned by { ∂

∂zA }A=1,...,l, and the 2-forms ωj depend only on the
coordinates xa:

ωj|U = ωj(x). (178)
Thus, Darboux coordinates for the k-pre-symplectic structure are foliated charts for the foliation associated
with the characteristic distribution.

Proof. Since we are assuming that the characteristic distribution is regular, it is completely integrable
(as it arises as the kernel of closed forms). It is enough to take a coordinate chart (U,φ) around
an arbitrary point m ∈ M such that (x1, . . . , xd−l, z1, . . . , zl) is a foliated chart for the integrable
distribution V . The fact that ωj|U is closed and only depends on (x1, . . . , xd−l) follows from the fact
that { ∂

∂zA }A=1,...,l generate the characteristic distribution.

7.1 Coisotropic submanifolds
Definition 7.10 (ℓ-Coisotropic submanifold of a k-symplectic manifold). Let (M, {ω1, . . . , ωk}) be a
k-symplectic manifold and let i : N ↪→ M be an immersed submanifold. We say that N is a ℓ-coisotropic
submanifold of (M, {ωj}) if, for every point n ∈ N

(TnN)ℓ,⊥{ω} ⊆ TnN , (179)

where the ℓ-orthogonal is defined as

(TnN)ℓ,⊥{ω} = {X ∈ TnM : iXω1(Y ) = ... = iXωℓ(Y ) = 0 , ∀ Y ∈ TnN } . (180)

Remark 7.11. Again, coisotropic embeddings are related to the search of minimal embeddings of a k-pre-
symplectic manifold into a k-symplectic manifold. Indeed, in general, the k-th orthogonal must contain
the characteristic distribution, so that when they are equal (the coisotropic case), there is not a coisotropic
embedding into a smaller subspace.

Notice the difference between the statement in Remark 3.9 and the k-symplectic setting. Indeed, we cannot
guarantee that a particular k-coisotropic embedding is the one with minimal dimension (unlike in the
symplectic setting), only that there is no proper subspace which contains the k-pre-symplectic subspace and
is k-symplectic.
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7.2 Coisotropic embeddings
7.2.1 Existence

Theorem 7.12 (k-Symplectic thickenings for k-pre-symplectic manifolds). Let (M, {ω1, . . . , ωk}) be a
k-pre-symplectic manifold. There always exists a k-symplectic manifold (M̃, {ω̃1, . . . , ω̃k}) and an embedding

i : M ↪→ M̃ , (181)

such that i(M) is a k-coisotropic submanifold of M̃ . The k-symplectic manifold (M̃, {ω̃j}) is referred to as a
k-symplectic thickening of (M, {ωj}).

Proof. The proof strategy is a direct generalization of the pre-symplectic case.

We consider the characteristic distribution V := ⋂k
j=1 kerωj , which is assumed to have constant rank,

and a complementary distribution H defining an almost product structure on M via a (1, 1)-tensor
P with Im(P ) = V . The thickening space M̃ is constructed as a tubular neighborhood of the zero
section of the vector bundle Λ1⊥

R(M) over M , where R = 1 − P . Let τ : M̃ → M be the bundle
projection.

The key idea is to apply the construction from the pre-symplectic case to each form ωj using the
same thickening space M̃ and the same tautological form ϑP built from the common characteristic
distribution V . Let ϑP be the tautological 1-form on M̃ defined as in the pre-symplectic case. In
local Darboux coordinates (xa, zA) for the foliation and adapted coordinates (xa, zA, µA) on M̃ , it
reads ϑP = µAP

A. We then define a collection of k 2-forms on M̃ as follows:

ω̃j := τ ∗ωj + dϑP , for j = 1, . . . , k. (182)

Each ω̃j is closed since both τ ∗ωj and dϑP are closed. The term dϑP is independent of j and is
precisely the term that "repairs" the degeneracy of all the ωj along the directions of V . An analogous
computation to the one performed in the pre-symplectic case shows that the intersection of the
kernels of the new forms is trivial, ⋂kj=1 ker ω̃j = {0}, in a tubular neighborhood of the zero section.
Thus, (M̃, {ω̃j}) is a k-symplectic manifold.

Regarding coisotropicity, also in this case, an analogous computation to the one performed in the pre-
symplectic case shows that (M, {ω1, ..., ωk }) is an ℓ-coisotropic submanifold of (M̃, { ω̃1, ..., ω̃k })
for ℓ = k.

7.2.2 Uniqueness

In this case, and in the subsequent ones, the uniqueness of coisotropic embeddings is not
guaranteed, not even topologically. In order to discuss uniqueness, given the generality of the
geometric structures we deal with, we need to restrict to particular cases, where, given the k-pre-
symplectic manifold (M, {ω1, . . . , ωk}) (with certain point-wise structure arising), we demand that
its k-symplectic thickening (M̃, {ω̃1, . . . , ω̃k}) has certain point-wise structure when restricted to M .

In particular, we focus on two different cases, one in which we find topological uniqueness of the
embeddings and the other in which we do not even find topological uniqueness.

Let us begin with the second case. Let Q ↪→ P be an embedded submanifold of a given manifold P ,
and define the canonical k-symplectic manifold

M̃ := T∗ P ⊕ · · · ⊕ T∗ P︸ ︷︷ ︸
k times

,
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together with the k-coisotropic submanifold

M := T∗ P |Q ⊕ · · · ⊕ T∗ P |Q︸ ︷︷ ︸
k times

.

Denote by {ω̃1, . . . , ω̃k} the canonical 2-forms on M̃ , and by {ω1, . . . , ωk} the canonical 2-forms on
M , induced by the natural inclusion

i : M ↪→ M̃ .

We will show that in certain cases, there exists a different embedding

i2 : M ↪→ M̃2 ,

where M̃2 is k-symplectomorphic to M̃ but such that the embedding is not neighborhood equivalent
to the canonical i : M ↪→ M̃ . In fact, we may prove a more general statement, characterizing all
embeddings topologically, where equivalence is given by diffeomorphism ψ : U → U2, where U and
U2 are neighborhoods of M in M̃ and M̃2, respectively; and such that ψ preserves the k-symplectic
structures on M .
Theorem 7.13. Let (M,ω1, . . . , ωk) be a k-pre-symplectic manifold which is locally k-symplectomorphic to
T∗ P |Q ⊕ · · · ⊕ T∗ P |Q︸ ︷︷ ︸

k times

. Let V denote its characteristic distribution. Then, coisotropic embeddings up to

topological equivalence as described above M ↪→ M̃ , where the k-symplectic structure on M̃ is isomorphic to
the canonical on M , are in bĳection with vector bundles

K∗ → M ,

such that K ⊕ · · · ⊕ K︸ ︷︷ ︸
k times

∼= V .

Proof. Let us first show that given a vector bundle K∗ → M together with an isomorphism of
vector bundles ϕ : K ⊕ · · · ⊕ K︸ ︷︷ ︸

k times

→ V gives rise to a coisotropic embedding. Indeed, let H be any

complement to V and identify

K∗ ⊕ · · · ⊕ K∗︸ ︷︷ ︸
k times

∼= V∗ ∼= Λ1⊥(M) .

Denote by iA : K∗ → K∗ ⊕ · · · ⊕ K∗︸ ︷︷ ︸
k times

, iA(k) := (0, · · · , 0, k, 0, · · · 0) . Using the identifactions above,

let ϑ denote the canonical 1-form on K∗ ⊕ · · · ⊕ K∗︸ ︷︷ ︸
k times

and define ϑA := i∗Aϑ together with the forms

ω̃A := ωA + dϑA .

Then, some local computations as above show that in a neighborhood of M in K∗, say M̃ := U
the previous forms define a k-symplectic structure for which M is k-coisotropic. Furthermore,
{ω̃1, . . . , ω̃k} define a k-symplectic structure such that (TmM, {ω̃1, . . . , ω̃k}) is k-symplectomorphic
to the canonical k-symplectic structure.

Conversely, let i : M → M̃ be a k-coisotropic embedding and define K := T M̃ |M . Let

ϕ : V → K∗ ⊕ · · · ⊕ K∗︸ ︷︷ ︸
k times
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be given by
ϕ(v) := (ivω̃1, . . . , ivω̃k) .

Using the local model, it is easy to check that this is a well defined vector bundle isomorphism.
We now clearly may identify K as a tubular neighborhood of M in M̃ , U , so that there is a
diffeomorphism

ϕ : K → U ,

such that ϕ∗ is the identity onM . This last condition implies that ω̃1, . . . , ω̃k coincide with the forms
built above on M .
Remark 7.14 (Counting solutions via K-theory). Theorem 7.13 frames the classification of topologically
non-equivalent coisotropic embeddings as a problem of finding "k-th roots" of the vector bundle. The subject
can be said to begin with A. Grothendieck in 1957, and developed in terms of vector bundles by M. Atiyah
and F. Hirzebruch (see [4, 51]). The natural setting to analyze this question is topological K-theory, and the
fundamental tool is the so-called Grothendieck group of real vector bundles over M .

The set of isomorphism classes of real vector bundles over M , which we denote by Vect(M), forms a
commutative semigroup under the direct sum operation ⊕. The Grothendieck group K0(M) is the group
completion of this semigroup. Its elements are equivalence classes of formal pairs of vector bundles (E,F ),
called virtual bundles, which are thought of as formal differences [E] − [F ]. Two pairs (E,F ) and (G,H)
are equivalent if there exists a trivial vector bundle L over M such that E ⊕ H ⊕ L ∼= F ⊕ G ⊕ L. The
addition in this group is defined by ([E] − [F ]) + ([G] − [H]) := [E ⊕G] − [F ⊕H]. Any genuine vector
bundle K ∈ Vect(M) is represented in K0(M) by the class of the pair (K, 0), which we denote simply by [K].
With this algebraic structure, the geometric condition on the vector bundle K,

V ∼= K ⊕ · · · ⊕ K (k times) ,

is translated into the algebraic equation within the ring K0(M):

[V ] = k · [K] , (183)

where the multiplication by an integer k arises from the repeated addition of [K] to itself.

Since the existence of at least one embedding is guaranteed by Theorem 7.12, let us denote by K0 a vector
bundle corresponding to one solution. Then its class [K0] is a solution to (183). If K1 is another such bundle,
its class [K1] must also satisfy (183), which implies

k · [K0] = k · [K1] =⇒ k · ([K1] − [K0]) = 0 .

This means that the difference between any two solutions, [K1] − [K0], must be an element of the so-called
k-torsion subgroup of K0(M), which is precisely the set of solutions [K] of the algebraic equation

k · [K] = 0 .

Consequently, the number of non-equivalent vector bundles K satisfying the hypothesis (and thus, the number
of non-equivalent embeddings) is given by the cardinality of the k-torsion subgroup of K0(M). This number
is a well-known topological invariant of the manifold M .

The subsequent example for M ∼= S1 × R2 illustrates this principle, as the two solutions (the
orientable and non-orientable line bundles) correspond to the two elements of the 2-torsion
subgroup of K0(M).
Example 7.15. Let Q = S1 ↪→ P = R2 and k = 2l be even. Then,

M = T∗ P |Q ⊕ · · · ⊕ T∗ P |Q︸ ︷︷ ︸
2l times
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is a 2l-coisotropic submanifold and the characteristic distribution V is a trivial bundle over M . Is not hard to
check that rank V = 2l, and using that M ∼= S1 × R2l, we can see that there are two vector bundles K → M
such that V ∼= K∗ ⊕ · · · ⊕ K∗, an orientable (trivial) line bundle and a non-orientable line bundle.

Now let us move on to an example where we can find topological uniqueness. The local
model will be the following. Let Q be a manifold, and let D ⊆ TQ be a completely integrable
distribution. Define M̃ := T∗ Q⊕ · · · ⊕ T∗ Q︸ ︷︷ ︸

k times

to be the canonical k-symplectic manifold, and let

M := D◦ ⊕ · · · ⊕ D◦︸ ︷︷ ︸
k times

⊆ M̃ the be the k-coisotropic submanifold. Then, the canonical embedding is

the unique possible coisotropic embedding, up to a diffeomorphism that preserves the form on M .
Theorem 7.16. Let (M,ω1, . . . , ωk) be a k-pre-symplectic manifold that is locally k-symplectomorphic
to D◦ ⊕ · · · ⊕ D◦. Then, all k-coisotropic embeddings of M into a k-symplectic manifold locally k-
symplectomorphic to the canonical one are neighborhood equivalent to each other.

Proof. Let M ↪→ M̃ be a k-coisotropic embedding and let V be the characteristic distribution on M .
It is easy to check that the map

ϕ : T M̃
/

TM −→ V∗ ⊕ · · · ⊕ V∗︸ ︷︷ ︸
k times

,

given by ϕ([v]) := (ivω̃1, . . . , ivω̃k) is well defined and defines an isomorphism (essentially restricting
to the local case). Now, as usual, to end the proof we choose a diffeomorphism between two
neighborhoods that coincides with ϕ on M , so that we may assume that we have two different
k-symplectic structures {ω̃(1)

1 , . . . , ω̃
(1)
k } and {ω̃(2)

1 , . . . , ω̃
(2)
k } defined on a neighborhood U of M , and

such that they coincide on M .

8 k-Pre-cosymplectic manifolds
As in the k-symplectic setting, we deal with more general structures that one may find in the
literature. For the sake of completeness, we cite the Darboux theorem for the more restrictive
version.
Definition 8.1 (k-Pre-cosymplectic manifold). A k-pre-cosymplectic manifold is a tuple

(M, {η1, . . . , ηk}, {ω1, . . . , ωk}) ,

whereM is a smooth manifold, η1, . . . , ηk ∈ Ω1(M) are k closed differential 1-forms, andω1, . . . , ωk ∈ Ω2(M)
are k closed differential 2-forms.
Definition 8.2 (Characteristic distribution). The characteristic distribution of a k-pre-cosymplectic
structure is the distribution

V :=
(

k⋂
i=1

ker ηi
)

∩

 k⋂
j=1

ker ωj

 . (184)

Remark 8.3. As in the previous sections, we will always assume that all forms have constant rank, that
the 1-forms {η1, . . . , ηk} are nowhere zero, and that their common characteristic distribution is a smooth
distribution of constant rank.
Remark 8.4 (k-Cosymplectic manifold). A k-pre-cosymplectic manifold is a k-cosymplectic manifold
when its characteristic distribution is trivial, i.e., V = {0}. This structure appears in the description of
certain classical field theories and time-dependent systems with multiple conserved quantities [26].

40



Before citing the Darboux theorem found in the literature, let us first introduce what we mean by a La-
grangian distribution. A distribution L on a k-cosymplectic manifold (M, {η1, . . . , ηk}, {ω1, . . . , ωk})
is called k-Lagrangian if for every m ∈ M ,

L|m = {v ∈ TmM : ηj(v) = ωj(v,L|m) = 0 , for j = 1, . . . , k} .

Theorem 8.5 (Darboux theorem for k-cosymplectic manifolds). Let (M, {ηi}, {ωj}) be a k-cosymplectic
manifold of dimension d = k + n + nk. Assume that there is an involutive Lagrangian distribution of
rank nk and that η1 ∧ · · · ∧ ηk defines a volume form on ⋂kj=1 ker ωj (so in particular ⋂kj=1 ker ωk has rank
k). Then, for every point m ∈ M , there exists a coordinate chart (U,φ) centered at m, with coordinates
(t1, . . . , tk, qa, pja)j=1,...,k;a=1,...,n, such that:

ηi|U = dti, ωj|U = dqa ∧ dpja .

We will call such coordinates Darboux coordinates for the k-cosymplectic structure.

Proof. See [26].
Remark 8.6. The canonical example of k-cosymplectic manifold with the previous local structure is
Rk × T∗ Q⊕ · · · ⊕ T∗ Q︸ ︷︷ ︸

k times

. Again, a more general result can be found in [44].

Remark 8.7. Under the hypotheses of Theorem 8.5, a family of Reeb vector fields, R1, . . . , Rk, can be
defined uniquely by

iRi
ηj = δij , iRi

ωj = 0 .
In Darboux coordinates, these vector fields read Ri = ∂

∂ti
. We would like to mention that Reeb vector fields

are not well defined in general.

As for k-pre-symplectic manifolds in general, one can only prove the following:
Theorem 8.8 (Darboux theorem fork-pre-cosymplectic manifolds). Let (M, {η1, . . . , ηk}, {ω1, . . . , ωk})
be a k-pre-cosymplectic manifold, such that its characteristic distribution V has constant rank l. Then, for ev-
ery pointm ∈ M , there exists a coordinate chart (U,φ) aroundm, iwht coordinates (x1, . . . , xd−l, z1, . . . , zl),
such that the characteristic distribution is locally spanned by { ∂

∂zA }A=1,...,l and the 1-forms ηj and the 2-forms
ωj only depend on the coordinates xa.

Proof. The same strategy as in Theorem 3.6 works.

8.1 Coisotropic submanifolds
Definition 8.9 (ℓ-Coisotropic submanifold of a k-cosymplectic manifold). Let (M, {ηi}, {ωj}) be a
k-cosymplectic manifold, and let i : N ↪→ M be an immersed submanifold. For an integer ℓ ∈ {1, . . . , k},
we say that N is an ℓ-coisotropic submanifold if, for every point n ∈ N ,

TnN
ℓ,⊥ ⊆ TnN ,

where the ℓ-k-cosymplectic orthogonal is defined as

TnN
ℓ,⊥ := {X ∈ TnM | ηi(X) = 0, ωj(X, Y ) = 0, ∀i, j ∈ {1, . . . , ℓ}, ∀Y ∈ TnN } .

8.2 Coisotropic embedding
8.2.1 Existence

Theorem 8.10 (k-Cosymplectic thickenings for k-pre-cosymplectic manifolds). Let (M, {ηi}, {ωj})
be a k-pre-cosymplectic manifold. There exists a k-cosymplectic manifold (M̃, {η̃i}, {ω̃j}) and an embedding

i : M ↪→ M̃ , (185)
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such that i(M) is a k-coisotropic submanifold of M̃ .

Proof. Consider the characteristic distribution V and a complementary distribution H defining an
almost product structure via a projector P with Im(P ) = V . The thickening space M̃ is a tubular
neighborhood of the zero section of the vector bundle Λ1⊥

R(M), where R = 1 − P . Let τ : M̃ → M
be the bundle projection.

As in the k-pre-symplectic case, we define a single tautological 1-form ϑP on M̃ and the new
k-cosymplectic structure is then defined by pulling back all the original forms and applying the
same regularization term for the ωj :

η̃i := τ ∗ηi , for i = 1, . . . , k, (186)
ω̃j := τ ∗ωj + dϑP , for j = 1, . . . , k. (187)

All new forms are closed by construction. The correction terms dϑP are designed to introduce
non-degeneracy along the directions of V . An analogous computation to the previous sections
confirms that the resulting structure (M̃, {η̃i}, {ω̃j}) has a trivial characteristic distribution in a
neighborhood of the zero section, and is thus a k-cosymplectic manifold.

Also the proof of k-coisotropicity follows from an analogous computation to the ones made in the
previous sections by taking into account Definition 8.9.

8.2.2 Uniqueness

Uniqueness in the k-pre-cosymplectic setting is not guaranteed, as in the k-pre-symplectic scenario,
and the same counter example may be easily generalized to include the previous case:

Let Q ↪→ P be a submanifold and define the canonical k-cosymplectic manifold

M̃ := Rk × T∗ P ⊕ · · · ⊕ T∗ P︸ ︷︷ ︸
k times

with the k-coisotropic submanifold defined as

M := Rk × T∗ P |Q ⊕ · · · ⊕ T∗ P |Q︸ ︷︷ ︸
k times

⊂ M̃ .

We would like to study the possible k-coisotropic embeddings of M or, more generally, the
possible k-coisotropic embeddings of a k-cosymplectic manifold (M, {ηj}, {ωj}) that is point-wise
isomorphic to that of Rk × T∗ P |Q ⊕ · · · ⊕ T∗ P |Q︸ ︷︷ ︸

k times

.

Theorem 8.11. Let (M, {ηj}, {ωj}) be a k-cosymplectic manifold which is point-wise k-cosymplectomorphic
to Rk × T∗ P |Q ⊕ · · · ⊕ T∗ P |Q︸ ︷︷ ︸

k times

. Denote by V its characteristic distribution. Then, coisotropic embeddings

up to neighborhood diffemorphism preserving the structure onM , i : M ↪→ M̃ into a k-cosymplectic manifold
(M̃, {η̃}, {ω̃j}) which is isomorphic to the canonical k-cosymplectic structure on M are characterized by
vector bundles K → M such that

K∗ ⊕ · · · K∗︸ ︷︷ ︸
k times

∼= V .

Proof. The proof follows as in the k-symplectic case. The 1-forms η̃j are just given by the pullback
of ηj .
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Example 8.12. Now it is easy to generalize Example 7.15 to the k-cosymplectic setting by defining
Q := S1 ↪→ P := R2, with k = 2l, showing that we do not have uniqueness of embeddings.

Again, following the same ideas of the k-pre-symplectic case, we may prove uniqueness in certain
particular cases. However, in the case of k-cosymplectic geometry, as in cosymplectic, we need to
be careful with the orbits of the Reeb vector fields. In full generality, we may only prove that any
two embeddings with the local structure mentioned in the statement of the following theorem are
topologically equivalent.
Theorem 8.13. Let (M, η1, . . . , ηk, ω1, . . . , ωk) be a k-pre-cosymplectic manifold which is locally D◦ ⊕ · · · ⊕
D◦ ×Rk, for some completely integrable distribution D on certain P . Then any pair of coisotropic embeddings
M ↪→ M̃ into a k-cosymplectic manifold which is point-wise isomorphic to T∗ P ⊕ · · · ⊕ T∗ P × Rk on M
are diffeomorphic.

For completeness, let us mention that employing the same tecniques as in the cosymplectic and
k-symplectic we may guarantee that the diffeomorphism preserves the structure on M , provided
that the Reeb vector fields (defined in Remark 8.7) are equal on M . So that we may obtain the
following refinement:
Theorem 8.14. Let (M, η1, . . . , ηk, ω1, . . . , ωk) be a pre-k-cosymplectic manifold which is locally D◦ ⊕
· · · ⊕ D◦ × Rk, coisotropically embedded into M̃ , equipped with two different k-cosymplectic structures,
(η̃(1)

1 , . . . , η̃
(1)
k , ω̃

(1)
1 , . . . , ω̃

(1)
k ) and (η̃(2)

1 , . . . , η̃
(2)
k , ω̃

(2)
1 , . . . , ω̃

(2)
k ), which are point-wise isomorphic to the

canonical k-cosymplectic structure, equal on M and such that the induced Reeb vector fields are equal on M .
Then, they are diffeomorphic through a diffeomorphism that preserves the structures on M .

9 k-Pre-contact manifolds
Definition 9.1 (k-Pre-contact manifold). A k-pre-contact manifold is a pair (M, {η1, . . . , ηk}), where
M is a smooth manifold and η1, . . . , ηk ∈ Ω1(M) are k differential 1-forms.
Remark 9.2. Throughout this section, we will assume that the distributions Dj := ker(ηj) and their
intersection D := ⋂k

j=1 ker(ηj) have constant rank. We also assume that the restriction of each dηj to D has
constant rank.
Definition 9.3 (Characteristic distribution). Let (M, {ηj}) be a k-pre-contact manifold. We define its
characteristic distribution as

V :=
 k⋂
j=1

ker ηj

 ∩

 k⋂
j=1

ker(dηj|⋂k

l=1 ker ηl
)
 .

Remark 9.4 (k-Contact manifold). When V = { 0 }, or, equivalently, the set of forms {η1, . . . , ηk} is
such that

η1 ∧ · · · ∧ ηk ∧ dη1 ∧ · · · ∧ dηk ̸= 0

everywhere on M , the collection defines a k-contact structure, and the pair (M, {ηj}) is called a k-contact
manifold.

Again, we prefer a more general approach but, for the sake of completeness, we add here the
Darboux theorem found in the literature.
Definition 9.5 (k-Lagrangian distribution). A distribution L on M is called k-Lagrangian if for every
m ∈ M ,

L|m = {v ∈ TmM : ηj(v) = dηj(v,L|m) = 0 for j = 1, . . . , k} .

Theorem 9.6 (Darboux theorem for k-contact manifolds). Let (M, {ηj}) be a k-contact manifold of
dimension d = k + n+ nk. Suppose there is a k-Lagrangian distribution of rank nk and that η1 ∧ · · · ∧ ηk
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defines a volume form on ⋂kj=1 ker dηj . Then, for every point m ∈ M , there exists a coordinate chart (U,φ)
centered at m, with coordinates (t1, . . . , tk, qa, paj)j=1,...,k;a=1,...,nj

, such that

ηj|U = dtj − pjadqa (no sum over j).

We will call such coordinates Darboux coordinates for the k-contact structure.

Proof. See [34].
Remark 9.7. The canonical model for these coordinates is M := Rk × T∗ Q⊕ · · · ⊕ T∗ Q︸ ︷︷ ︸

k times

.

Remark 9.8. As in the k-cosymplectic scenario, for k-contact manifolds under the hypotheses of Theorem 9.6,
there is a distinguished family of vector fields, called Reeb vector fields, R1, . . . , Rk defined as the unique
vector fields satisfying

iRi
ηj = δij , iRi

dηj = 0 .

Locally, in Darboux coordinates, Ri = ∂
∂ti

.

Again, in full generality, we may only guarantee the following:
Theorem 9.9 (Darboux theorem for k-pre-contact manifolds). Let (M, {ηj}) be a k-pre-contact
manifold, such that its characteristic distribution V has constant rank l. Then, for every point m ∈ M ,
there exists a coordinate chart (U,φ) around m, with cordinates (x1, . . . , xd−l, z1, . . . , zl) such that the
characteristic distribution is locally spanned by { ∂

∂zA }A=1,...,l, and such that the 1-forms ηj only depend on
the coordinates xa.

Proof. The proof follows as a direct generalization of the proof of Theorem 3.6.

9.1 Coisotropic submanifolds
Definition 9.10 (ℓ-Coisotropic submanifold of a k-contact manifold). Let (M, {η1, . . . , ηk}) be a
k-contact manifold, and let

i : N ↪→ M

be an immersed submanifold. For an integer ℓ ∈ {1, . . . , k}, we say thatN is an ℓ-coisotropic submanifold
of (M, {ηj}) if, for every point n ∈ N ,

TnN
ℓ,⊥{η} ⊆ TnN ,

where the ℓ-k-contact orthogonal of the tangent space TnN is defined as the subspace

TnN
ℓ,⊥{η} :=

X ∈
ℓ⋂

j=1
ker(ηj)n : dηj(X, Y ) = 0 ∀j ∈ {1, . . . , ℓ}, ∀Y ∈ TnN

 .
9.2 Coisotropic embedding
9.2.1 Existence

Theorem 9.11 (k-Contact thickenings for k-pre-contact manifolds). Let (M, {η1, . . . , ηk}) be a
k-pre-contact manifold. There exists a k-contact manifold (M̃, {η̃1, . . . , η̃k}) and an embedding

i : M ↪→ M̃

such that i(M) is a k-coisotropic submanifold of M̃ . The k-contact manifold (M̃, {η̃j}) is referred to as a
k-contact thickening of (M, {ηj}).
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Proof. Consider the characteristic distribution V of the k-pre-contact structure and an associated
almost product structure P with Im(P ) = V . The thickening space M̃ is constructed as a tubular
neighborhood of the zero section of the vector bundle Λ1⊥

R(M), where R = 1 − P . Let τ : M̃ → M

be the bundle projection. As in the previous sections, the adapted coordinates on M̃ include the
base coordinates from M and a single set of fiber coordinates, which we denote by µA.

On this space, we define a single tautological 1-form ϑP := µAP
A. The new k-contact structure on

M̃ is then defined by applying the same correction to each pre-contact form:

η̃j := τ ∗ηj − ϑP , for j = 1, . . . , k.

By taking the exterior derivative, we get dη̃j = τ ∗dηj − dϑP . The term −dϑP , common to all forms,
is designed to resolve the degeneracy along the characteristic distribution V . A direct computation,
analogous to the one for a single pre-contact form, shows that the resulting structure (M̃, {η̃j}) is
non-degenerate in a neighborhood of the zero section, thus defining a k-contact manifold.

To prove that M is a k-coisotropic submanifold, we must show that TmM
⊥

{η̃} ⊂ TmM , which can
be proved via a computation analogous to the one made in the pre-contact case.

9.2.2 Uniqueness

Much in vain of the k-pre-cosymplectic case, and employing the same tecniques developed,
uniqueness is not garanteed, and a generalization of the example described in the k-symplectic
case works.

Nevertheless, uniqueness may follow by requiring the thickening M̃ to have certain geometry.
Indeed, we have the following
Theorem 9.12. Let (M, η1, . . . , ηk) be a k-pre-contact manifold locally diffeomorphic to D◦ ⊕ · · · ⊕ D◦ ×Rk,
for certain completely integrable distribution D on a particular manifold P . Then, any pair of coisotropic
embeddings M ↪→ M̃ into a k-contact manifolds which are locally diffeomorphic to T∗ P ⊕ · · · ⊕ T∗ P × Rk

are diffeomorphic through a diffeomorphism preserving the structures on M .

Again, this theorem may be refined if we take into account the orbits of the Reeb vector fields:
Theorem 9.13. Let (M, η1, . . . , ηk) be a k-pre-contact manifold locally diffeomorphic to D◦ ⊕ · · · ⊕ D◦ ×Rk,
for certain completely integrable distribution D on a particular manifoldP . LetM be coisotropically embedded
into M̃ , where M̃ is endowed with two different k-contact structures, (η̃(1)

1 , . . . , η̃
(1)
k ) and (η̃(2)

1 , . . . , η̃
(2)
k )

such that the forms and their exterior differentials coincide on M . If the Reeb vector fields are proportional,
both embeddings are neighborhood equivalent.

10 Pre-multisymplectic manifolds
Definition 10.1 (Pre-multisymplectic manifold). A pre-multisymplectic manifold is a pair (M,ω),
where M is a smooth d-dimensional manifold and ω ∈ Ωk+1(M) is a closed differential (k + 1)-form.
Remark 10.2. We will always assume that ω has constant rank, in the sense that the map

ω♭m : TmM −→ ΛkT∗
mM : X 7→ iXΩm

has image of constant dimension as m varies over M . That is, dim(Im ω♭m) is independent of m ∈ M .
Definition 10.3 (Characteristic distribution). The characteristic distribution of a pre-multisymplectic
form ω is defined by

V := kerω .
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Remark 10.4 (Multisymplectic manifold). If ω♭ is injective (i.e., kerω♭ = {0}), then ω is said to be
non-degenerate, and the pair (M,ω) is called a multisymplectic manifold (or sometimes (k+1)-plectic).
In this case, ω defines a fiberwise isomorphism

ω♭ : TM → ΛkT∗M.

10.1 Coisotropic submanifolds
Definition 10.5 (ℓ-coisotropic submanifold of a multisymplectic manifold). Let (M,ω) be a
multisymplectic manifold. Let N ⊂ M be an immersed submanifold, and let ℓ ∈ {1, . . . , k}. We say that N
is an ℓ-coisotropic submanifold of (M,ω) if, for every point n ∈ N ,

(
ΛℓTnN

)⊥ω ⊆ ΛℓTnN,

where the ℓ-orthogonal is defined as
(
ΛℓTnN

)⊥ω :=
{
X ∈ TnM : iXωn(ξ) = 0 ∀ ξ ∈ ΛℓTnN

}
.

Remark 10.6. When k = 1, the notion of ℓ-coisotropic submanifold coincides with the usual definition of
coisotropic submanifold in symplectic and pre-symplectic geometry.

10.2 Coisotropic embeddings
10.2.1 Existence

Theorem 10.7 (Multisymplectic thickenings of pre-multisymplectic manifolds). Let (M, ω) be a
pre-multisymplectic manifold, with ω a closed k-form on M . Assume ker ω to be of constant rank and
integrable. There always exists a multisymplectic manifold (M̃, ω̃) and an embedding

i : M ↪→ M̃ , (188)

such that i(M) is a (k − 1)-coisotropic submanifold of M̃ . The multisymplectic manifold (M̃, ω̃) is referred
to as multisymplectic tickening of (M, ω).

Proof. Since ω has been assumed to have constant rank r, there exists a system of local coordinates{
xa, zA

}
a=1,...,r;A=1,...,l

, (189)

with l = d− r, such that ω reads

ω = ωa1...ak
(x)dxa1 ∧ ... ∧ dxak , (190)

whose characteristic distribution V reads

V = span
{

∂

∂zA

}
A=1,...,l

. (191)

Consider a complementary distribution H providing an almost product structure on M associated
with the (1, 1)-tensor P on M that, in the system of local coordinates considered, reads

P =
(

dzA − Px
A
a dxa

)
⊗ ∂

∂zA
=: PA ⊗ ∂

∂zA
. (192)
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The opposite (1, 1)-tensor R reads

R = 1 − P = dxa ⊗
(

∂

∂xa
+ Px

A
a

∂

∂zA

)
. (193)

Consider the bundle Λk−1⊥
R(M) over M . Denote by τ the projection map onto M . Its sections are

differential (k − 1)-forms that locally reads

α =αA1...Ak
PA1 ∧ ... ∧ PAk+

αa1A2...Ak
dxa1 ∧ PA2 ∧ ... ∧ PAk+

...
αa1...ak−1Ak

dxa1 ∧ ... ∧ dxak−1 ∧ PAk .

(194)

Thus, a system of adapted coordinates on Λk−1⊥
R(M), reads{

xa, zA, µA1 ... Ak−1 , µa1 A2 ... Ak−1 , ..., µa1 ... ak−1 Ak−1

}
aj=1,...,r;Aj=1,...,l

. (195)

The projection map τ thus reads

τ : (xa, zA, µA1 ... Ak−1 , µa1 A2 ... Ak−1 , ..., µa1 ... ak−1 Ak−1) 7→ (xa, zA) . (196)

The bundle Λk−1⊥
R(M) has a distinguished (k − 1)-form, which is the obvious analogous of the

tautological 1-form of T∗M , defined as

ϑPα (X1, ..., Xk−1) = α(τ∗(X1), ..., τ∗(Xk−1)) , ∀ X1, ..., Xk−1 ∈ TαM , (197)

where α has to be considered as a point in Λk−1⊥
R(M) on the left hand side, and as a differential

(k − 1)-form on M on the right hand side. In the system of local coordinates chosen, ϑP reads

ϑP =µA1 ... Ak−1P
A1 ∧ ... ∧ PAk−1+

µa1 A2 ... Ak−1dxa1 ∧ PA2 ∧ ... ∧ PAk−1+
...
µa1 ... ak−2 Ak−1dxa1 ∧ ... ∧ dxak−2 ∧ PAk−1 .

(198)

Consider the differential k-form
ω̃ = τ ∗ω + dϑP , (199)

on Λk−1⊥
R(M). It is closed by definition. It is also non-degenerate on the whole Λk−1⊥

R(M). Indeed,
consider a vector field X written in the basis{

Ha := ∂

∂xa
+ Px

A
a

∂

∂zA
,
∂

∂zA
,

∂

∂µA1 ... Ak−1

,
∂

∂µa1 A2 ... Ak−1

, ... ,
∂

∂µa1 ... ak−2 Ak−1

}
, (200)

as

X = XaHa +XA ∂

∂zA
+XA1 ... Ak−1

∂

∂µA1 ... Ak−1

+

Xa1 A2 ... Ak−1

∂

∂µa1 A2 ... Ak−1

+

...

Xa1 ... ak−2 Ak−1

∂

∂µa1 ... ak−2 Ak−1

.

(201)
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The contraction iX ω̃ reads

iX ω̃ =E(0)
A1 ... Ak−1 P

A1 ∧ ... ∧ PAk−1+
E(1)

a1 A2 ... Ak−1 dxa1 ∧ PA2 ∧ ... ∧ PAk−1+
...
E(k−1)

a1 ... ak−1 dxa1 ∧ ... dxak−1 +

F (0)A1 dµA1 ... Ak−1 ∧ PA2 ∧ ... ∧ PAk−1+
F

(1)
0

a1 dµa1 A2 ... Ak−1 ∧ PA2 ∧ ... ∧ PAk−1+

F
(1)
1

A2dµa1 A2 Ak−1 ∧ dxa1 ∧ PA3 ∧ ... ∧ PAk−1+
...

F
(k−1)
k−2

a1dµa1 ... ak−2Ak−1 ∧ dxa2 ∧ ... ∧ dxak−2 ∧ PAk−1+

F
(k−1)
k−1

Ak−1dµa1 ... ak−2Ak−1 ∧ dxa1 ∧ ... ∧ dxak−2 .

(202)

The coefficient F (0)A1 reads
F (0)A1 = −XA1 . (203)

Since the form
dµA1 ... Ak−1 ∧ PA2 ∧ ... ∧ PAk−1 (204)

is independent of all the other forms appearing in the decomposition (202), imposing iX ω̃ =
0 , ∀ X gives

XA = 0 , ∀ A = 1, ..., l . (205)
With this condition in mind one gets

F
(1)
1

A

2 = −XA2 = 0 , (206)

F
(1)
0

a1 = −Xa1 . (207)

Since the form
dµa1 A2 ... Ak−2 ∧ PA2 ∧ ... ∧ PAk−1 (208)

is independent of all the other forms appearing in the decomposition (202), imposing iX ω̃ =
0 , ∀ X gives

Xa = 0 , ∀ a = 1, ..., r . (209)
With conditions (205) and (209) in mind, one gets that all the other coefficients F (j)

k vanish, whereas

E(0)
A1 ... Ak−1 = XA1 ... Ak−1 , (210)

E(1)
a1 A2 ... Ak−1 = Xa1 A2 ... Ak−1 , (211)

... (212)
E(k−2)

a1 ... ak−2 Ak−1 = Xa1 ... ak−2 Ak−1 , (213)
E(k−1)

a1 ... ak−1 = 0 . (214)

Since the E(j)
k are coefficients of independent (k − 1)-forms, imposing iX ω̃ = 0 , ∀ X gives

XA1 ... Ak−1 = 0 , (215)
Xa1 A2 ... Ak−1 = 0 , (216)

...
Xa1 ... ak−2 Ak−1 = 0 . (217)
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Conditions (205), (209), (215), (216), ..., (217) are the proof that

iX ω̃ = 0 , ∀ X ∈ X(Λk−1⊥
R(M)) =⇒ X = 0 , (218)

namely, that ω̃ is non-degenerate, and, thus, multisymplectic.

We will prove that M is a (k − 1)-coisotropic submanifold Λk−1⊥
R(M), that will be our M̃ .

Consider the contraction ω̃m(X, W1, ..., Wk−1) for m ∈ M , where W1, W2, ..., Wk−1 are tangent
vectors to M at m

Wj = Wj
aHa

∣∣∣
m

+Wj
A ∂

∂zA

∣∣∣
m
. (219)

Such a contraction reads
ω̃m(X, W1, ..., Wk−1) = τ ∗ωm(X, W1, ..., Wk−1) +

XA1 ... Ak−1

(
PA1 ∧ ... ∧ PAk−1

)
(W1, ..., Wk−1) +

Xa1 A2 ... Ak−1

(
dxa1 ∧ PA2 ∧ ... ∧ PAk−1

)
(W1, ..., Wk−1) +

...
Xa1 ... ak−2 Ak−1

(
dxa1 ∧ ...dxak−2 ∧ PAk−1

)
(W1, ..., Wk−1) .

(220)

We want to prove that imposing this contraction to be zero for all Wj implies that X is tangent to M .

Let us start by considering all the Wj to be vertical, namely such that Wj
a = 0. In this case the only

contribution to the previous contraction reads

XA1 ... Ak−1

(
PA1 ∧ ... ∧ PAk−1

)
(W1, ..., Wk−1) . (221)

Imposing it to vanish for all the Wj implies

XA1 ... Ak−1 = 0 . (222)

Consider now W1 to be horizontal, namely of the type W1 = W1
aHa, and all the other Wj to be

vertical. In this case, the only contribution to the contraction above is

Xa1 A2 ... Ak−1

(
dxa1 ∧ PA2 ∧ ... ∧ PAk−1

)
(W1, ..., Wk−1) . (223)

Imposing it to be zero for all the Wj implies

Xa1 A2 ... Ak−1 = 0 . (224)

This argument can be iterated by considering all the other possible choices for the vector fields Wj .
Eventually, one ends up with the conditions

Xa1 a2 ... Ak−1 = 0 ,
...

Xa1 ... ak−2 Ak−1 = 0 ,
(225)

thus proving that X is tangent to M . This completes the proof that M is a (k − 1)-coisotropic
submanifold of a Λk−1⊥

R(M).

Thus, the multisymplectic manifold M̃ we were searching for is the bundle Λk−1⊥
R(M), and the

embedding i is the zero section of τ
i = στ0 . (226)
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Remark 10.8. Note that in this pre-multisymplectic case, the zero-section condition is not necessary to prove
the non-degeneracy of ω̃.
Remark 10.9. Interestingly, the same co-symplectic thickening described in Section 4.2.1 can be found by
directly working on the pre-multisymplectic manifold (M, ω ∧ η). In this case, if one considers the whole
Λ2⊥

R(M), with the system of adapted local coordinates{
t, qa, pa, z

A, µAB, µAa, µ
a
A, µAt, µta, µ

a
t

}
, (227)

one gets the following multisymplectic structure

ω̃ ∧ η = τ ∗ω ∧ η + dϑP (228)

for

ϑP = µABP
A ∧ PB + µAaP

A ∧ dqa + µaAP
A ∧ dpa + µAtP

A ∧ dt+ µtadt ∧ dqa + µatdt ∧ dpa , (229)

following Theorem 10.7. Even if it is non-degenerate, the 3-form (228) can not be associated to a cosymplectic
structure because it does not have, in general, the structure

ω̃ ∧ η = ω̃ ∧ η̃ . (230)

For this reason, one may restrict to the intersection

Λ2⊥
R(M) ∩ I(η) , (231)

where I(η) is the differential ideal generated by the differential 1-form η. The intersection (231) reads the
subbundle of Λ2(M) consisting of differential 2-forms having only components along η and PA. Denote it
by M̃ = Λ2⊥

R(M) ∩ I(η). A system of adapted local coordinates on it can be written as{
t, qa, pa, z

A, µtA
}
, (232)

and the tautological form here reads
ϑ̃P = µtAτ

∗η ∧ PA . (233)

The multisymplectic structure defined on M̃ out of (233) is

ω̃ ∧ η = τ ∗ω ∧ η − d(µtAPA) ∧ τ ∗η = (τ ∗ω − d(µtAPA)) ∧ τ ∗η . (234)

Following the general theory presented in Theorem 10.7, M̃ is a multisymplectic manifold and M is a
2-coisotropic submanifold of M̃ . Furthermore, (234) now has the structure of a 2-form associated with a
cosymplectic structure. In particular, it reads

ω̃ ∧ η = ω̃ ∧ η̃ , (235)

for the cosymplectic structure

ω̃ = τ ∗ω + dϑP , (236)
η̃ = τ ∗η , (237)

where ϑP reads the 2-form (94), which coincides with the cosymplectic structure obtained in Theorem 4.12.
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10.2.2 Uniqueness

Also in this case, given the generality of multisymplectic structures, uniqueness can not be proven
in general. What we offer is a general tool that allows us to characterize multisymplectic coisotropic
embeddings, when the geometry of the multisymplectic manifold is fixed. Again, we give two
examples, one where topological uniqueness is found (here we also give sufficient conditions for
these to be neighborhood equivalent), and one where we do not find uniqueness.

The main technique that we will use is the following to prove neighborhood equivalence is the
following:
Lemma 10.10. Let i : M → M̃ be an embedding and ω̃1, ω̃2 ∈ Ωk(M̃) two closed forms such that ω̃1 = ω̃2 on
T M̃ |M . Denote by ω̃t := ω̃1 + t(ω̃2 − ω̃1). Suppose there exists a complete vector field ∆ on a neighborhood
of M that vanishes on M such that

• For every x in said neighborhood,
lim
t→−∞

ψ∆
t (x) ∈ M.

• It satisfies £∆i∆ω̃ ∈ ⋂
t∈[0,1] Im ♭t, where ω̃ = ω̃2 − ω̃1

Then, the pairs (M, M̃, ω̃1) and (M, M̃, ω̃2) are neighborhood equivalent.

Proof. We just apply Moser’s trick. Indeed, by the relative Poincaré Lemma (Theorem 2.14), and by
taking a tubular neighborhood such that ∆ is the induced Liouville vector field, we have that there
exists a (k − 1)-form θ vanishing on M such that

ω̃2 − ω̃1 = dθ ,

where θ is given by
θ :=

∫ 1

0
ψ∗
t i∆t (ω̃2 − ω̃1) dt .

Here, ψt is multiplication by t and ∆t = dψt

dt . Then, in order to apply Moser’s trick we need to
guarantee the existence of a vector field Xt such that

iXtω̃t = −θ .

This, in turn, will follow if we can show that for each s there exists a smooth choice of vector field
Xs,t satisfying

iXs,tω̃t = −ψ∗
t i∆(ω̃2 − ω̃1) = −ψ∗

s i∆ω̃ , (238)

since we may define Xt :=
∫ 1

0 s
kXs,tds. Eq. (238) reads as ψ∗

s i∆ω̃ ∈ ⋂
t∈[0,1] Im ♭t, for every s, which is

equivalent to £∆ti∆ω̃ ∈ ⋂
t∈[0,1] Im ♭t and, since ∆t is proportional to ∆, this last conditions follows

by hypothesis, showing that we may apply Moser’s trick, obtaining neighborhood equivalence.

To illustrate the previous ideas, let us prove the uniqueness of a particular type of coisotropic
embedding, the one presented in Section 10.2.1, employing Lemma 10.10.

More particularly, let (M,ω) be an arbitrary pre-multisymplectic manifold with kernel of constant
rank and let i : (M,ω) −→ (M̃, ω̃) be a coisotropic embedding into a multisymplectic manifold that
has the linear type of the embedding built in Section 10.2.1. That is, if we choose H a distribution
complementary to V = ker ω, TM = H⊕V , then for each x ∈ M there is a multisymplectomorphism

fx : Ti(x) M̃ → TxM ⊕
k−1⊕
j=1

(
Λk−1−jH∗ ⊗ ΛjV∗

)
,
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that is the identity on Ti(x) M , where the multisymplectic form in the latter space is chosen as
Ω + ω|x, where Ω is the restriction of the canonical multisymplectic form in TxM ⊕ Λk−1(M) .
We are now going to find (very mild) conditions on M̃ to guarantee that then M̃ is locally
multisymplectomorphic to the bundle of transversal forms on M so that, in particular, it has fixed
topology. We would like to remark that these conditions are local. For the time being, let us fix a
distribution H̃ in a neighborhood of M in M̃ that is complementary to i∗(TM) on M , namely,

T M̃ |M = i∗(TM) ⊕ H̃|M .

Proposition 10.11. Let ϕ : H̃|M −→ Λk(M) be given by ϕ(h̃|i(x)) := p
(
i∗
(
i
h̃
Ω|i(x)

))
, where

p : Λk−1(M) −→ Λk−1⊥
R(M)

is the projection onto the transversal forms and h̃ is an element of H̃. Then, ϕ defines a vector bundle
isomorphism into Λk−1⊥

R(M).

Proof. Using the point-wise structure, that is, the existence of the multisymplectomorphism

fx : Ti(x) M̃ → TxM ⊕
k−1⊕
j=1

(
Λk−1−jH∗ ⊗ ΛjV∗

)
,

we only need to prove that the previous map is a bundle isomorphism into the space of transversal
forms (with respect to the appropriate almost product structure), for any complementary H̃ of TxM

in the previous space. Now, any complementary H̃ is given by the image of⊕k−1
j=1

(
Λk−1−jH∗ ⊗ ΛjV∗

)
under a map A⊕ id, where

A :
k−1⊕
j=1

(
Λk−1−jH∗ ⊗ ΛjV∗

)
−→ TxM

is an arbitrary linear map. Hence, we only need to check that the map

ϕ :
k−1⊕
j=1

(
Λk−1−jH∗ ⊗ ΛjV∗

)
−→ Λk−1⊥

R(M) : v 7→ p
(
i∗(ivΩ + iA(v)ω)

)
.

defines an isomorphism, for an arbitrary linear map A. Notice, however, that iuω is parallel and
that ivΩ is transversal so that, p(iuω) = 0 and p(i∗(ivΩ)) = i∗(ivΩ) and hence

ϕ(v) = (ivΩ) |Tx M

which is easily checked to define a linear isomorphism into the space of transversal forms.

Proposition 10.11, after employing the tubular neighborhood theorem, shows that any coisotropic
embedding of M that has the linear type of embeddings into the space of transversal forms is
neighborhood diffeomorphic (not necessarily multisymplectomorphic) to

M ↪→ Λk−1⊥
R(M) ,

given by the zero section. We now focus on giving conditions for it to be neighborhood multisym-
plectomorphic. As it is reasonable to assume, it has to do with the flatness of the embedding:
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Theorem 10.12. Assume that H̃ can be chosen to be 1-Lagrangian and integrable, at least in a neighborhood
of M , which we denote by Ũ . Further assume that the fibered manifold that the distribution induces
π : Ũ → M is such that i∆ω̃ is transversal, for every vertical vector field ∆, and for a particular almost
product structure. Then, there are two neighborhoods U and V of M in M̃ and Λk−1⊥

R(M) (M interpreted
as the zero section), respectively, and a multisymplectomorphism

ψ : U → V .

Proof. First observe that the map defined in Proposition 10.11 is actually a multisymplectomorphism
of vector bundles on M̃ . Indeed, denoting by ω̃ the form on Λk−1⊥

R(M), for x ∈ TxM , v1, . . . , vk ∈
TxM and h̃1, . . . , h̃k ∈ H̃|M we have

(ϕ∗ω̃|x) (v1 + h̃1, . . . , vk + h̃k) = ω̃|x
(
v1 + ϕ(h̃1), . . . , vk + ϕ(vk)

)
= ω̃|x

(
v1 + (i

h̃1
Ω)|Tx M , . . . , vk + (i

h̃k
Ω)|Tx M

)
=

k∑
j=1

(−1)j−1
(
i
h̃j

Ω
)

(v1, . . . , v̂j, . . . , vk)

=
k∑
j=1

Ω(v1, . . . , h̃j, . . . , vk) = Ω(v1 + h̃1, . . . , vk + h̃k) ,

where in the last equality we have used that H̃ is 1-Lagrangian. Now, using tubular neighborhood
theory [1] we may choose a diffeomorphism between two neighborhoods M ⊂ U ⊆ Λk−1⊥

R(M) and
M ⊂ V ⊆ Λk−1⊥

R(M),
ψ : U −→ V

such that ψ∗|M = ϕ and such that the fibers of Λk−1⊥
R(M) → M are mapped into the leaves of H̃.

Therefore we have ψ∗Ω = ω̃ on M . Let ∆ denote the Euler vector field. It only remains to show that
∆ satisfies the hypotheses of Lemma 10.10 for the forms ω̃ and ψ∗Ω. The first condition is clear.
Regarding the second one, notice that we may write

£∆i∆ (ω̃ − ψ∗Ω) = i∆di∆ ω̃ − i∆di∆ψ∗Ω
= i∆di∆ ω̃ − ψ∗ (iψ∗∆diψ∗∆Ω) .

We will show that each of these forms is transversal, and then that ♭t takes values in the transversal
forms, for a neighborhood small enough. Indeed, the first part follows from the following lemma:

Lemma 10.13. Let τ : M̃ → M be a fibered manifold (surjective submersion) onto M equipped with an
almost product structure TM = H ⊕ V . Suppose ω̃ ∈ Ωk(M̃) such that i∆ω̃ is a semi-basic transversal
form to H, for every vertical vector field. Then, i∆di∆ω̃ is semi-basic and transversal to H as well.

Proof. The fact that i∆di∆ω̃ is semi-basic is clear. Now to show that it is transversal, it is enough to
show that (i∆di∆ω̃)(h̃1, . . . , h̃k) = 0, for every h̃1, . . . , h̃k ∈ H . Indeed:

(i∆di∆ω̃)(h̃1, . . . , h̃k) = d(i∆ω̃)(∆, h̃1, . . . , h̃k)

= ∆
(
ω̃(∆, h̃1, . . . , h̃k)

)
+
∑
j

(−1)j+1ω̃(∆, [∆, h̃j], h̃1, . . . ,
̂̃
hj, . . . , h̃k) .

The first term is null by hypotheses, and the second because [∆, h̃j] is vertical, and i∆ω̃ is semi-basic.
Hence, we have (i∆di∆ω̃)(h̃1, . . . , h̃k) = 0, which finishes the proof.
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By Lemma 10.13, the form £∆i∆ (ω̃ − ψ∗Ω) is transversal and semi-basic. It only remains to show
that ♭t is surjective onto the space of transversal and semi-basic forms when restricted to vertical
vector fields. Indeed, it is clear that on M ♭1 = ♭0 defines a surjective mapping

{vertical vectors} −→ Λk−1⊥
R(M) .

Furthermore, since ψ maps fibers into leaves of H̃ (which is 1-Lagrangian), in general ♭t is a map
♭t : {vertical vectors} −→ Λk−1⊥

R(M). Now, since being surjective is an open condition, there will
be a neighborhood of M in Λk−1⊥

R(M) such that ♭t defines a surjective vector bundle map onto the
space of transversal forms and thus, we have

£∆i∆ω̃ ∈
⋂

t∈[0,1]
♭t ,

and, by Lemma 10.10, we conclude that both U and V (after maybe being shrunk further) are
neighborhood multisymplectomorphic.

Now let us study an example where we do not find uniqueness:
Example 10.14. Let V be a vector space and L ⊆ V be a vector subspace. Define

(
V ⊕ ΛkV ∗,Ω

)
to be the

k-multisymplectic vector space with

Ω(v1 + α1, . . . , vk+1 + αk+1) =
k+1∑
j=1

(−1)j+1αj(v1, . . . , v̂j, . . . , vk+1),

and let
(
L⊕ ΛkV ∗, ω

)
be the k-pre-multisymplectic vector space given by ω = i∗Ω, where i denotes the

inclusion of the previous vector space into the former. Notice that L⊕ ΛkV ∗ defines a k-coisotropic subspace,
with kernel K = {α ∈ ΛkV ∗ : α|L = 0} =

(
V ⊕ ΛkV ∗

)⊥Ω, k. Notice that the canonical embedding

ϕ : L⊕ ΛkV ∗ ↪→ V ⊕ ΛkV ∗

is, in fact, a coisotropic embedding. Let us study coisotropic embeddings of a k-premultisymplectic
manifold (M,ω) with linear type (L⊕ ΛkV ∗, ω) into a k-multisymplectic manifold (M̃, ω̃) with linear type
(V ⊕ ΛkV ∗, ω̃). Furthermore, let us assume that point-wise, the coisotropic embedding is given by ϕ, that is,
we assume that the corresponding coisotropic embedding i : M ↪→ M̃ satisfies that, for each x ∈ M there is a
couple of (pre-)multisymplectic isomorphisms

fx : TxM −→ L⊕ ΛkV ∗ ,

gx : Tf(x) M̃ −→ V ⊕ ΛkV ∗ .

that make the following diagram commutative:

TxM Ti(x) M̃

L⊕ ΛkV ∗ V ⊕ ΛkV ∗

i∗

fx gx

ϕ

,

Let us prove that this sort of coisotropic embedding is not unique, by providing a pre-multisymplectic
manifold (M,ω) with local type (L ⊕ ΛkV ∗) and two different coisotropic embeddings into two different
multisymplectic manifolds (M̃i, ω̃i), i = 1, 2 with linear type (V ⊕ ΛkV ∗, ω̃). Indeed, let us perform a
general study to characterize, at least point-wise, these sort of embeddings. Let i : M ↪→ M̃ be such a
map. Let W denote the 1-Lagrangian distribution on M given by W|x = f−1

x

(
ΛkV ∗

)
. It is well known
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that this distribution does not depend on the chosen multisymplectomorphism fx (see [54]). Let L be any
complementary distribution to W , so that TM = L ⊕ W (we may even request L to be k-Lagrangian, but
this is not necessary). Let

H := T M̃
∣∣∣
M

/
TM .

Lemma 10.15. There is a vector bundle isomorphism

ϕ : W −→
k−1⊕
j=0

ΛjH∗ ⊗ Λk−1−jL∗ .

Proof. Notice that
k−1⊕
j=0

ΛjH∗ ⊗ Λk−1−jL∗ ∼= Λk−1 (H ⊕ L)∗ ,

and that we have
T M̃ |M ∼= W ⊕ L ⊕ H .

Let ψ : T M̃ |M → W ⊕ L ⊕ H denote a vector bundle isomorphism and define

ϕ(w)(h1 + l1, . . . , hk−1 + lk−1) := ω̃(w, h1 + l1, . . . , hk−1 + lk−1) .

Given the local model, it is easy to check that this map defines a vector bundle isomorphism.

Now, if L is k-Lagrangian, for each pair (H, ϕ) of vector bundle overM and isomorphism as in Lemma 10.15,
we may build an embedding of the previous type such that Ti(x) M̃/Ti(x) M ∼= H, so that if we find two
different H with two linear isomorphisms, we find two different coisotropic embeddings:
Theorem 10.16. Let H → M be a vector bundle together with a vector bundle isomorphism

ϕ : W −→ Λk−1 (H ⊕ L)∗ .

Then, there is a multisymplectic structure on a neighborhood of the zero section with the local type V ⊕ ΛkV∗

along M such that M (identified as the zero section) is a (k − 1)-coisotropic submanifold.

Proof. We have that
T H|M ∼= H ⊕ L ⊕ W

and we may define a k-form by

ω̃(h1 + l1 + w1, . . . , hk + lk + wk) =
k∑
j=1

(−1)j+1ϕ(wj)(h1 + l1, . . . , hk + lk) .

This form clearly satisfies i∗ω̃ = ω, where i : TM → T H|M denotes the inclusion. Hence, it may be
extended to a closed form on a neighborhood of M in H, proving the result.

Hence, it is enough to give two different (non-isomorphic) vector bundles that satisfy the hypotheses of the
previous theorem. Indeed, let

M = S1 × R3 × Λ2(R4) ∼= S1 × R3 × R4 × Λ2R4∗,

with pre-multisymplectic form given by the pullback of the natural multisymplectic form on Λ2(R4). Since
M is parallelizable, making the identificacion TM = M × RdimM , we clearly have that W is a trivial
subbundle of dimension 10,

W ∼= M × R10 ,
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and that L may be chosen as a trivial subbundle of dimension 4. Hence, multisymplectic embeddings of the
previous type are given by 1-dimensional vector bundles over M , H −→ M such that

Λ2 (L ⊕ H) ∼= Λ2
(
R4 ⊕ H

) ∼= M ⊗ R10 .

It turns out that H may be chosen both as the trivial bundle and as the pullback of the Möbius band bundle
over S1, proving that there are at least two non-isomorphic ways of embeddingM as a coisotropic submanifold.
Example 10.17. As a more elementary example where uniqueness is not guaranteed is a coisotropic
embedding of a smooth manifold with the zero premultisymplectic form, M , into a manifold M̃ together with
a volume form. Indeed, if M is orientable (res. non-orientable), any orientable (res. non-orientable) line
bundle E → M yields such an embedding and, in fact, any two embeddings of this kind are represented by
certain orientable line bundle, as the coisotropic submanifolds of a manifold together with a volume form are
the codimension one submanifolds.

11 Conclusions and Future work
We have extended the coisotropic embbeding theorem for pre-symplectic manifolds to other
geometric scenarios, that are fundamental to describe time-dependent mechanical systems, La-
grangian systems depending on the action and classical field theories. To do this, we have used a
generic methodology, so that we are now in a good position to apply the obtained results in the
so-called regularization problem for singular Lagrangian systems. Furthermore, we have studied
the uniqueness of coisotropic embeddings in general and found that neighborhood equivalence
only holds in the symplectic setting. However, if we relax the notion of equivalence of coisotropic
embeddings, we obtain the classification summarized in Table 1, where we have added whether
coisotropic embeddings in the different geometries considered are unique, where uniqueness is
considered up to neighborhood diffeomoprhism, neighborhood diffeomorphisms that preserve the
structure on M , and neighborhood diffeomorphisms that preserve the structure.

So, in an ongoing paper, we will apply the above results in these directions:

• Consider singular Lagrangian systems defined on R × TQ, where Q is the configuration
manifolds. A constraint algorithm has been developed in [9], and a classification of these
type of Lagrangians can be found in [23, 50]. Combining both results one could extend the
results in [49].

• The regularization problem for singular Lagrangian systems depending on the action relies in
two previous results; first, the corresponding constraint algorithm developed in [19] and the
classification of this type of Lagrangians [16]. The main difference with the previous case and
the pre-symplectic case is that we are dealing with a Jacobi bracket and not a Poisson bracket.

• The coisotropic embedding theorem also received several reformulations over the years. We
mention the approach of V. Guilleming and S. Sternberg that proved an equivariant (with
respect to the action of a Lie group) version of the original theorem (see [48]). Our plan is to
extend that construction to the rest of the geometric scenarios for mechanics and Classical
Field Theories.

• Finally, singular classical field theories have been considered in many recent papers, and we
will only mention a few of them, sending the reader to the actual references in these papers
[20, 21, 22, 31]. We should first obtain a classification of Lagrangians on the space of 1-jets of
the configuration bundle using the operator introduced by D. Saunders [58] using a volume
form on the space-time manifold (the base of the configuration bundle). Then, our intention
is to study the regularization problem on these premises.
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Table 1: Summary of uniqueness of embeddings

Type of
geometry

Topological Topological and
preserves structure
on M

Neighborhood
equivalent

Symplectic Yes Yes Yes


Classical
Mechanics

Cosymplectic Yes If Reeb vector fields
coincide on M

If previous and
Reeb vector fields
share orbits

Contact Yes If Reeb vector fields
coincide on M

If previous and
Reeb vector fields
share orbits

Cocontact Yes If Reeb vector fields
coincide onM pair-
wise

If previous and
Reeb vector fields
share orbits pair-
wise

k-symplectic Depends on the
fixed model

Depends on the
fixed model

Depends on the
fixed model



Classical
Field

Theories

k-cosymplectic Depends on the
fixed model

Depends on the
fixed model

Depends on the
fixed model

k-contact Depends on the
fixed model

Depends on the
fixed model

Depends on the
fixed model

Multisymplectic Depends on the
fixed model

Depends on the
fixed model

Depends on the
fixed model
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